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@ Researchers may be interested in making causal statements about
populations — relevant for policy recommendations

o What “works” in general practice?
e What “works” for the general population?

@ ldeal: a randomized trial in a representative sample. Rare!

@ Instead we have the trade-off:

o Randomized trials: unbiased for sample, but selective populations
o Non-experimental studies: data on broad populations, but selection bias
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Population vs. sample effects

ATE = average treatment effect; ATT = average treatment effect on the treated
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Estimating population effects

How to use a representative yet complex sample to estimate population effects?
— eg the Early Childhood Longitudinal Studies, the Education Longitudinal Study

POPUJATION

PATE PATT
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Propensity scores (PS)

@ To infer effect of treatment A (eg childcare subsidy to poor families)
on outcome Y (eg first grade readiness to learn): need treated
(A =1) and comparison (A = 0) groups to be comparable

o Not in observational studies

e So, make them look similar on observed characteristics X — those that
may confound treatment effects

o Key assumption: no unmeasured confounders U

@ PS = probability of receiving treatment, given covariates X

e Is “balancing score”, ie given PS, distribution of X is the same between
treated and comparison

o Use the estimated PS to balance covariate distribution: matching,
weighting, subclassification

@ After balance obtained

o Compare outcome between balanced treated and comparison groups
e Or fit an outcome model (w/ covariates) to the balanced sample
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PS methods and complex samples

@ Using PS methods on representative population datasets should get
us population treatment effects

@ But original PS methods assume simple random sampling

e Many applications with complex survey data ignore survey weights
(DuGoff, Schuler, & Stuart, 2014)

@ PS methods for complex samples still open area of research
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PSs and complex samples: survey weights

@ Survey weights incorporate sampling probabilities, non-response
adjustment, post-stratification

@ Have received much research attention: eg Zanutto (2006), Dugoff et al.
(2014), Ridgeway et al. (2015), Austin et al. (2016), Lenis et al. (2017)

e My understanding from this literature (assuming no U)

e Use survey weights for PS model? It depends.

e PS matching/subclassification: no need to incorporate survey weights
o PS weighting: generally, survey-weight the PS model (more in a bit!)

o Use survey weights for outcome model? Yes!
e PS matching/subclassification: survey-weight the outcome model
o PS weighting: multiply survey weights and PS weights
o Weight transfer? If survey weights depends on A given X — yes for PS
matching. | think yes for PS weighting as well.
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PSs and complex samples: other design features

@ Include strata, clusters as design features in survey analysis commands
(eg when fitting outcome model) for appropriate variance estimation

@ Strata: include stratum indicators as predictors in outcome model

@ Clusters: there is a relevant literature on multilevel PS methods,
motivated by clustered data (not necessarily complex surveys)
— see Hong & Raudenbush 2006, Arpino & Mealli 2011, Kelcey 2011, Thoemmes
& West 2011, Li et al. 2013
e Treatment assignment model may be multilevel with influences by
covariates at cluster/individual levels and random effects
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e The present study
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Our motivation: concern about heterogeneity

@ Strata Z:
e Two of the reasons for using stratified sampling instead of SRS:

@ to ensure enough representation of each stratum (subpopulation)
@ to reduce variance of estimates, because within-stratum variance is
believed to be smaller than total variance
e Both imply potentially important/substantial differences across strata
e Our concern: strata may be systematically different with respect to
@ covariate distribution
@ covariates’ influence on treatment assignment, treatment prevalence
@ treatment effects, covariates’ modification of treatment effects

e An otherwise appropriate PS analysis that simply treats Z as a design
feature in fitting models might be biased

@ Clusters C:

o Clusters within a stratum may also vary in the same aspects
e Assume such variation within a stratum is random

@ same spirit with the assumption that sampling units are exchangeable

Nguyen & Stuart propensity score + complex survey SREE 2018 Washington DC 13 / 36



Setup: Population structure

o L strata
@ M clusters, nested in strata

@ N units, nested in clusters
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Setup: Treatment assignment and treatment effects

@ Treatment assignment
o True model P(A=1|X,Z,C)

@ Assume 0 < P(A=1] X,Z,C) <1 in the inference population

@ Potential outcomes and treatment effects

o Potential outcomes Y'(a), for a=0,1
o True model P[Y(a) | X, Z, C]

o Assume no unmeasured confounders (Y(1), Y(0)) 1L A | (X, Z, C)
o Individual effects, TE; = Y;(1) — Y;(0), unidentified

o Interested in population average effect:

PATE = E[Y(1) — Y(0)] or PATT =E[Y(1)— Y(0)| A= 1]
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Setup: Sample participation

@ Multi-stage probability sampling
o Clusters are sampled within strata
e Sampling probabilities may depend on stratum and cluster
e Units are sampled within sampled clusters

@ Usually units within a cluster are sampled with equal probability

@ Non-response
e May depend on factors/characteristics W at cluster or unit level
e Surveys often adjust for non-response
@ Sample participation S requires being sampled and responding
o True model P(§=1|2Z,C, W)
o Survey weights are estimates of 1/P(S=1|Z2=2,C=C, W =W,)
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Weights for estimating population effects

POPULATION

To estimate PATE, need to weight sample treated and sample comparison groups
to the population w.r.t. variables that influence Y;(a) (or TE;)
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Weights for estimating population effects

@ The weights that do this are the inverse of

PS=1,A=A | X=X,Z=2,C=C)

o Case 1: if sampling happened after treatment assigned, factor
=P(S=1]A=A,X,Z,G)P(A=Ai | Xi,Z,C)
o Case 2: if treatment assigned after sample assembled, factor

=P(S=11X,Z,G)P(A=A|S=1,X,2Z,C)

o First piece: taken care of by survey weights, assuming (A, X) C W or
XCcWw

@ Second piece: population PS in case 1, sample PS in case 2
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PSs need to be estimated

Assume first case, need to estimate population PS, P(A =1|X, Z, C)

Survey weights help us use the sample to estimate population PS

If sample size of each cluster is large, can estimate within each cluster

@ If not, need to use some model, eg common logit, probit

Consider Z first (assuming number of strata not large):
e ignore strata — not very good
e stratum indicators — better
o stratified by stratum — probably best

Consider C (assuming a lot of clusters):

o use multilevel modeling — probably best
e ignore clusters — maybe not bad in some cases
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e Simulation
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Simulations to date

@ For each scenario, generate 100 populations

@ For each population, draw 10,000 samples
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Population structure

stratum number of clusters cluster size

1 90 6000
2 60 6000
3 70 4000
4 80 4000
5 200 2000
6 150 2000
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Covariate distribution

@ binary Xj: prevalence varies

e systematically across strata: .55, .35, .3, .7, .4, .6
o randomly across clusters: deviations = beta(2,2) recentered and scaled
to range (—.05,.05)

@ continuous X:

Xoi = Xi; + UX + €2, UX~ N(0,.2), €2~ N(0,1)

1
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Treatment assignment

logit[P(A=1|X,Z,C)] = [-.5+ (:3)1{Z = 1,2} — (.2)1{Z = 5,6} + U]+
[1+(5)1{Z =1,2} — (5)1{Z = 5,6} + U] X+
[5+ (2)1{Z = 1,2} — (:2)1{Z = 5,6} + U] X+

@ Scenarios vary in the inclusion or exclusion of

e strata main and interaction effects
o random cluster effects (normal or recentered gamma)
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Potential outcomes and treatment effects

Y(0) = U+
X1+
Xo+

Y(1) = U +[(2)1{Z = 1,2} — (2)1{Z = 5,6} + U5+
Xi+[1+(5)1{Z = 1,2} — (5)1{Z = 5,6} + UIT X1+
Xo+[1+(.5)1{Z = 1,2} — (.5)1{Z = 5,6} + U T Xo+

Y;
€ 1

TE =[(2)1{Z = 1,2} — (2)1{Z = 5,6} + U F]+
[14(5)1{Z = 1,2} — (.5)1{Z = 5,6} + UIF X1+
[1+(5)1{Z=1,2} — (5)1{Z = 5,6} + U "] Xo+

Y Yo

€ —€

€"1, €Y ~ N(0,1). Random cluster effects are normal or recentered gamma.
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Sample participation

@ In all scenarios, S depends on Z and C via sampling design
e base scenario: sample 10 clusters per stratum, 100 units per cluster

@ Variation due to non-response

o S does not depend on X or A (base scenario)
e S depends on binary X
e S depends on A

@ Such dependence is captured in survey weights

Nguyen & Stuart propensity score + complex survey SREE 2018 Washington DC 26 / 36



\Y) ds implemented

@ So far, use one-level models, ignoring clusters

@ 3 methods w.r.t. strata

e Naive: ignore strata in both PS and outcome models

e Strata as covariates: include strum indicators in PS and outcome
models

e Stratified analysis: fit PS model, balance covariates, and fit outcome
model in each stratum separately and then combine

@ All models fit using survey package, with strata, clusters and weights
as design features
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@ Variation in model for sample participation does not matter

o Not surprising as we have correct survey weights

@ Random cluster effects of all kinds only increase variance and do not
affect bias

o Because our outcome model is linear — biases in weights lead to biases
contributed by individuals to the PATE that average to zero

e May not be the case with a nonlinear outcome model
e Then might want to use a multilevel model to better estimate the PSs

o Also, a multilevel outcome model may help reduce variance
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@ When treatment effects vary across strata, the naive method is biased

o Because naive method does not balance Z
e Should also be problematic when Z is a confounder but not an effect
modifier (we didn’t have such scenario though)

@ When covariates' influence on treatment assignment also varies across
strata, the strata-as-covariates method is also biased, but stratified
analysis remains unbiased
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Bias for 100 populations from one scenario
with all cluster- and strata-associated heterogeneity

stratified analysis _|

weighting+regression

strata as covariates
weighting+regression

ignore strata
weighting+regression

stratified analysis
weighting only

strata as covariates
weighting only

ignore strata
weighting only
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stratified analysis
weighting+regression

strata as covariates
weighting+regression

ignore strata
weighting+regression

stratified analysis
weighting only

strata as covariates
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ignore strata
weighting only
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e Recommendations
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Recommendations: how to handle strata

@ When strata are suspected to vary with respect to either treatment
effect or treatment assignment model, they should be incorporated in
the analysis

o If strata are suspected to interact with covariates in influencing
treatment assignment, stratified analysis is preferred
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Recommendations: weights when using PS weighting

o Multiply weights: survey weight x PS weight

@ Decide whether PS weight should be based on population PS or
sample PS — depends on what the survey weight captures

PATE-weight, = [P(S=1,A=A | X=X, Z=27,C=G)]*
[P(S =1 | A,‘,)(;,Z,‘7 C,')]_1 X [P(A = A,‘ | )(,'7 Z[, C,')]_l case 1

does survey weight capture this? population PS

[P(S=1]X,Z,C)] " x[P(A=A|S=1,X,Z,C)]"" case?2

or does it capture this? sample PS
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