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Adjustment for Observed Confounding

§ Adjust for 𝑿 via multiple regression or propensity score 
methods

§ Assumption: No unobserved confounders (no “hidden” bias)
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Unobserved Confounding
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Unobserved Confounding in Pharmacoepidemiology
5

Sebastian Schneeweiss. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics.  
Pharmacoepidemiology & Drug Safety 2006 May. 15(5):291-303

populations in clinical trials.3 They are large enough to
assess the frequency and etiology of rare drug effects
and avoid the delays common in the collection of
primary data.
Despite their importance, pharmacoepidemiologic

claims data studies have been criticized for the
incompleteness of their information on potential
confounders such as the use of over-the-counter
medications (e.g., aspirin in studies of NSAIDs),
markers of clinical disease severity, body mass index,
smoking status, functional status, laboratory values,
among others (Table 1). Such factors may lead to
selective prescribing of drugs, which may result in
biased estimates of the association between drugs and
health outcomes.4 All too often research studies
discuss the potential for residual confounding only
qualitatively without any quantitative assessment of
the magnitude of such bias. Sensitivity analyses were
described as ‘the last line of defense against biases after
every effort has been made to eliminate, reduce, or
control them in study design, data collection, and data
analysis.’5 The basic concept of sensitivity analyses is
to make informed assumptions about potential residual
confounding and quantify its effect on the relative risk
estimate of the drug-outcome association. If suitable
data sources can be identified, these assumptions can
be substituted by empirical estimates and then be used
for external adjustment of the Drug-Disease Outcome
Association. Figure 1 shows how sensitivity analyses
and external adjustment fit into the methods tool kit of

pharmacoepidemiologists to better understand and
possibly control confounding.
Existing sensitivity analyses include the production

of a grid of estimates as a function of several
assumptions with limited knowledge of the true
parameter constellation. Several epidemiologic studies
on occupational safety using employment records with
limited information on workers’ health status used this
approach.6,7 Recent studies have explored how strong
unmeasured confounding must be to explain the
elevated relative risks observed in studies of drug
effects using health care utilization databases.8–11 If
additional information is available through surveys,
external adjustment can be attempted with increasing
methodological complexity.
Among the several recent examples of observational

database studies on drug effects that struggle with the
potential for residual confounding bias are those of the
associations between newer sedative hypnotics and hip
fractures, statin use and cancer, selective COX-2
inhibitors and cardiovascular events, and anti-TNFa
therapy and lymphatic malignancies.
This paper demonstrates a framework of techniques

for sensitivity analysis and external adjustment for
residual confounding using several examples. First, it
explains simple sensitivity analyses in the absence of
external information. Next, it demonstrates the use
of external information for external adjustment of effect
estimates for single binary covariates and follows with
an examination of techniques for externally adjusting

Table 1. Clinical, behavioral, and socioeconomic factors often not measured in pharmacoepidemiologic database studies and that
may cause residual confounding

Potential confounders often unmeasured
in pharmacoepidemiologic
database studies

Examples of drug—disease outcome associations possibly affected by residual confounding
in epidemiologic database studies

Anti-TNFa therapy and
lymphoma in patients

with rheumatoid arthritis
Statins

and fractures

Cox-2 inhibitors
and myocardial

infarction

NSAIDs
and short-term

mortality

Body mass index X X X
Over-the-counter aspirin use, X
Smoking X X X
Frailty X X X
Functional impairment X
Cognitive impairment X
Educational attainment X X X
Income status X X X

Laboratory values, for example, EBV
antibody titer, lipid level, CRP level

X X

Results of invasive and non-invasive
exams, for example, bone mineral
density measure (DXA), ECG,

X X

Disease-specific severity markers X
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Sensitivity Analysis for an Unobserved Confounder

Goal of a formal sensitivity analysis (Rosenbaum 1995, about Cornfield):
“replacing 
a general qualitative statement that applies in all observational studies 
by a quantitative statement that is specific to what is observed in a particular study”

“instead of saying
that an association between treatment and outcome does not imply causation, that 
hidden biases can explain observed associations,
they say that
to explain the association seen in a particular study, one would need a hidden bias 
of a particular magnitude.”
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Sensitivity Analysis for an Unobserved Confounder

Questions:
§ Consider a certain (range of) 𝑈, assess and correct bias

• what is the bias of the 𝑇𝑌 effect?
• what would the true 𝑇𝑌 effect be? (point & interval)

§ Characterize 𝑈 that nullifies the effect
• with what 𝑈 would the 𝑇𝑌 effect become stat. nonsig. or zero?
• Could there be such a 𝑈?
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Main message

§ Many flavors
§ Depends on specific situation (data, main analysis)
§ Depends on question asked

Caveat: Only several methods will be covered to get you started. 
Far from exhaustive.
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Methods covered

§ Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
§ Rosenbaum’s approach

• Sensitivity analysis for subclasses (Rosenbaum & Rubin 1983)
• Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, 

Rosenbaum 1998)
§ 2x2 tables and a binary 𝑈 (Greenland 1996; Harding 2003)
§ VanderWeele & Arah’s (2011) bias formulas for general 𝑌, 𝑇, 𝑈
§ Sensitivity analysis w/out assumptions/E-value (Ding & VanderWeele 2016, 

VanderWeele & Ding 2017)
§ Regression-based methods

• Simple linear system & omitted variable bias (Harding 2009)
• Complex non-linear systems (Lin, Psaty & Kronmal 1998)
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§ R. A. Fisher (1958) thought that the observed relationship between 
smoking and lung cancer was due to some unobserved genetic factor 
that made people more susceptible to both.

§ Cornfield et al. (1959) analysis apparently changed his mind: 
that genetic factor would have to be more strongly related to smoking 
and to lung cancer than anything already observed.

Fisher RA. Cigarettes, cancer and statistics. Centennial Rev Arts and Sciences. 2:151, Michigan State 
University, 1958.
Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., & Wynder, E. L. (1959). Smoking 
and lung cancer: Recent evidence and a discussion of some questions. Journal of the National Cancer 
Institute, 22:173–203.

Original example: Smoking and Lung Cancer
10



“if cigarette smokers have 9 times the risk of nonsmokers for developing lung cancer, 

and this is not because cigarette smoke is a causal agent, but only because cigarette 
smokers produce hormone X, 

then the proportion of hormone X-producers among cigarette smokers must be at least 9 
times greater than that of nonsmokers. 

If the relative prevalence of hormone X-producers is considerably less than ninefold, then 
hormone X cannot account for the magnitude of the apparent effect.” 

(Cornfield et al., 1959)
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𝑇 𝑌
smoking lung canceroRR!" = 9

subscript !" means 𝑇 predicting 𝑌
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“if cigarette smokers have 9 times the risk of nonsmokers for developing lung cancer, 

and this is not because cigarette smoke is a causal agent, but only because cigarette 
smokers produce hormone X, 

then the proportion of hormone X-producers among cigarette smokers must be at least 9 
times greater than that of nonsmokers. 

If the relative prevalence of hormone X-producers is considerably less than ninefold, then 
hormone X cannot account for the magnitude of the apparent effect.” 

(Cornfield et al., 1959)



𝑇 𝑌

𝑈

smoking lung cancer

hormone X

oRR!" = 9
RR!" = 1

RR!# > 1
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“if cigarette smokers have 9 times the risk of nonsmokers for developing lung cancer, 

and this is not because cigarette smoke is a causal agent, but only because cigarette 
smokers produce hormone X, 

then the proportion of hormone X-producers among cigarette smokers must be at least 9 
times greater than that of nonsmokers. 

If the relative prevalence of hormone X-producers is considerably less than ninefold, then 
hormone X cannot account for the magnitude of the apparent effect.” 

(Cornfield et al., 1959)



𝑇 𝑌

𝑈

smoking lung cancer

hormone X

oRR!" = 9

PR#" > 9

RR!" = 1

RR!# > 1

(simple proof in appendix A)
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“if cigarette smokers have 9 times the risk of nonsmokers for developing lung cancer, 

and this is not because cigarette smoke is a causal agent, but only because cigarette 
smokers produce hormone X, 

then the proportion of hormone X-producers among cigarette smokers must be at least 9 
times greater than that of nonsmokers. 

If the relative prevalence of hormone X-producers is considerably less than ninefold, then 
hormone X cannot account for the magnitude of the apparent effect.” 

(Cornfield et al., 1959)



Cornfield et al. answered which of the following questions?
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Questions:
§ Consider a certain (range of) 𝑈, assess and correct bias

• what is the bias of the 𝑇𝑌 effect?
• what would the true 𝑇𝑌 effect be? (point & interval)

§ Characterize 𝑈 that nullifies the effect
• with what 𝑈 would the 𝑇𝑌 effect become stat. nonsig. or zero?
• Could there be such a 𝑈?



Cornfield et al. answered which of the following questions?
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Questions:
§ Consider a certain (range of) 𝑈, assess and correct bias

• what is the bias of the 𝑇𝑌 effect?
• what would the true 𝑇𝑌 effect be? (point & interval)

§ Characterize 𝑈 that nullifies the effect
• with what 𝑈 would the 𝑇𝑌 effect become stat. nonsig. or zero?
• Could there be such a 𝑈?



Also, need methods that

accommodate both observed confounders and unobserved 
confounding!

Treatment is unconfounded given observed 𝑿 and unobserved 𝑈.
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Rosenbaum’s approach

use propensity score methods 
to get balance on observed 
confounders 𝑿

and then

conduct sensitivity analysis on 
an unobserved confounder 𝑈

𝑇 𝑌

𝑿

𝑈
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Rosenbaum & Rubin (1983) with subclassification

𝑇 𝑌

𝑿

𝑈

bypass surgery vs. 
medical treatment

symptom relief 
at six months

74 covariates

Rosenbaum, P. R., & Rubin, D. B. (1983). Assessing sensitivity to an unobserved binary covariate in an observational study 
with binary outcome. Journal of the Royal Statistical Society, 45(2), 212–218

binary 𝑇, 𝑌, 𝑈

Usual analysis: propensity score subclassification to balance 𝑿 and 
estimate the average treatment effect (ATE), E 𝑌$ − E 𝑌%
(risk difference of symptom relief at six months)

19



Rosenbaum & Rubin (1983) with subclassification

Sensitivity analysis:
§ propensity score subclassification to balance 𝑿
§ within each subclass, sensitivity analysis on how 𝑈 affects the ATE
§ average over the subclasses

𝑇 𝑌

𝑿

𝑈

bypass surgery vs. 
medical treatment

symptom relief 
at six months

74 covariates

OR!"

OR#!|"%&
OR#!|"%'

P 𝑈 = 1

subclass-specific SA similar in spirit to SA for 2x2 table in
Greenland (1996), Harding (2003) & Schneeweiss (2006)

binary 𝑇, 𝑌, 𝑈
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Rosenbaum & Rubin’s method answers which of the following 
questions?

21

Questions:
§ Consider a certain (range of) 𝑈, assess and correct bias

• what is the bias of the 𝑇𝑌 effect?
• what would the true 𝑇𝑌 effect be? (point & interval)

§ Characterize 𝑈 that nullifies the effect
• with what 𝑈 would the 𝑇𝑌 effect become stat. nonsig. or zero?
• Could there be such a 𝑈?



Rosenbaum & Rubin’s method answers which of the following 
questions?
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Questions:
§ Consider a certain (range of) 𝑈, assess and correct bias

• what is the bias of the 𝑇𝑌 effect?
• what would the true 𝑇𝑌 effect be? (point & interval)

§ Characterize 𝑈 that nullifies the effect
• with what 𝑈 would the 𝑇𝑌 effect become stat. nonsig. or zero?
• Could there be such a 𝑈?



Rosenbaum & colleagues with matched pair data

Similar idea: 
§ Matching to balance 𝑿 in each 

pair
§ Find values of sensitivity 

parameters concerning an 
unobserved 𝑈 where the true 
𝑇𝑌 effect may be no longer 
statistically significant

Rosenbaum, P. R. (1987). Sensitivity analysis for certain permutational inferences in matched observational studies. 
Biometrika, 74, 13–26.
Gastwirth, J. L., Krieger, A. M., & Rosenbaum, P. R. (1998). Dual and simultaneous sensitivity analysis for matched pairs. 
Biometrika, 85(4), 907–920.

𝑇 𝑌

𝑿

𝑈
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Starting point

If no unobserved confounding, 
after matching on X,
the two individuals in a matched pair 
would have equal probability of treatment assignment
and equal odds of outcome for the same treatment

(ignorability/as if randomized)

24



Three methods for a binary 𝑌: primal, dual and simultaneous

𝑇 𝑌

𝑈

Primal

tOR #!

∞OR!"

§ Due to some unobserved 𝑈 that is extremely predictive of the outcome, 
their odds of treatment assignment are different, 𝑂𝑅!" ≠ 1

§ Say the two odds are different by at most a factor of Γ > 1
1
Γ ≤ OR!" ≤ Γ

§ Then tOR #! is different from oOR #!, 
and the true p-value for treatment effect is different from the observed p-value.

§ What is the value of Γ where tOR #! may become statistically non-sig?

within a matched pair:
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Three methods for a binary 𝑌: primal, dual and simultaneous

§ Due to some unobserved 𝑈 that is extremely correlated with treatment assignment, 
their odds of outcome are different, 𝑂𝑅#" ≠ 1

§ Say these two odds are different by at most a factor of Δ > 1
1
Δ ≤ OR#" ≤ Δ

§ Then tOR #! is different from oOR #!, 
and the true p-value for treatment effect is different from the observed p-value.

§ What is the value of Δ where tOR #! may become statistically non-sig?

𝑇 𝑌

𝑈

Dual

tOR #!

∞ OR#"

within a matched pair:
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Three methods for a binary 𝑌: primal, dual and simultaneous

§ Due to some unobserved 𝑈, their odds of treatment are different, 𝑂𝑅!" ≠ 1, and 
their odds of outcome are different, 𝑂𝑅#" ≠ 1

§ Say these differences are bounded by factors of Γ and Δ (both > 1)
1
Γ ≤ OR!" ≤ Γ,

1
Δ ≤ OR#" ≤ Δ

§ Then tOR #! is different from oOR #!, 
and the true p-value for treatment effect is different from the observed p-value.

§ What are the values of Γ and Δ where tOR #! may be statistically non-sig?

𝑇 𝑌

𝑈

Simultaneous

tOR #!

OR#"

within a matched pair:

OR!"
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Three methods for a binary 𝑌: primal, dual and simultaneous

𝑇 𝑌

𝑈

𝑇 𝑌

𝑈

𝑇 𝑌

𝑈

Primal

Dual

Simultaneous
tOR #!

∞

∞

OR!"

OR#"

tOR #!

tOR #!

Γ > 1, Δ > 1

OR!" OR#"

1
Γ ≤ OR!" ≤ Γ

1
Δ ≤ OR#" ≤ Δ

What are the values of Γ and/or Δ where tOR #$ is statistically non-sig?
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𝑇 = 0

𝑌 = 1 𝑌 = 0

𝑇 = 1
𝑌 = 1 𝑎 𝑏

𝑌 = 0 𝑐 𝑑

using a modified McNemar’s
exact test for paired data

𝑏 > 𝑐

Liu, W., Kuramoto, S. J., & Stuart, E. A. (2013). An introduction to sensitivity analysis for unobserved confounding in 
nonexperimental prevention research. Prevention Science, 14(6), 570–80. doi:10.1007/s11121-012-0339-5
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𝑇 = 0

𝑌 = 1 𝑌 = 0

𝑇 = 1
𝑌 = 1 𝑎 𝑏

𝑌 = 0 𝑐 𝑑

using a modified McNemar’s
exact test for paired data

𝑏 > 𝑐

Liu, Kuramoto & Stuart (2013) example:

Liu, W., Kuramoto, S. J., & Stuart, E. A. (2013). An introduction to sensitivity analysis for unobserved confounding in 
nonexperimental prevention research. Prevention Science, 14(6), 570–80. doi:10.1007/s11121-012-0339-5

Mother death by accident

Child suicide 
hopspitalization

Child no suicide 
hospitalization

Mother death 
by suicide

Child suicide 
hospitalization 7 226 233

Child no suicide 
hospitalization 121 5246 5367

128 5472 5600
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Original test: 
§ H0: for discordant pair, equal probability (0.5) of each type
§ one-sided p-value = probability of observing 𝑏 or more pairs of type [10] 

among 𝑚 = 𝑏 + 𝑐 discordant pairs

𝑝 =3
&'(

)
𝑚
𝑖 0.5 & 0.5 )*&

𝑇 = 0

𝑌 = 1 𝑌 = 0

𝑇 = 1
𝑌 = 1 𝑎 𝑏

𝑌 = 0 𝑐 𝑑

using a modified McNemar’s
exact test for paired data

𝑏 > 𝑐
[10]

[01]
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m=10, b=9, pi=0.5

p-value = 0.011

Excel function  BINOM.DIST(b,m,pi,0) (each column); or Stata function bitest, R function binom.test
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Original test:
§ H0: for discordant pairs, equal probability (0.5) of each type
§ one-sided p-value = probability of observing 𝑏 or more pairs of type [10] among 

𝑚 = 𝑏 + 𝑐 discordant pairs

𝑝 =>
(%)

*
𝑚
𝑖 0.5 ( 0.5 *+(

Modified test:
§ H0: for discordant pairs, probability 𝜋 of type [10], 1 − 𝜋 of type [01]
primal: &

&,-
≤ 𝜋 ≤ -

&,-
; dual: &

&,.
≤ 𝜋 ≤ .

&,.
; simultaneous: 0.5 ≤ 𝜋 ≤ -

&,-
C .
&,.

+ &
&,-

C &
&,.

§ plugging in the bounds of 𝜋 gives bounds of p-value:

𝑝 =3
&'(

)
𝑚
𝑖 𝜋& 1 − 𝜋 )*&

§ which are the values of Γ and/or Δ where p-value upper-bound ≥ 0.05

𝑇 = 0

𝑌 = 1 𝑌 = 0

𝑇 = 1
𝑌 = 1 𝑎 𝑏

𝑌 = 0 𝑐 𝑑
𝑏 > 𝑐

using a modified McNemar’s
exact test for paired data

[10]

[01]
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m=10, b=9, upper-bound pi=0.625 (Γ=Δ=3)

upper-bound 
p-value = 0.063

Excel function  BINOM.DIST(b,m,pi,0) (each column); or Stata function bitest, R function binom.test
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Application to Liu et al. (2013)

Upper-bound of one-sided p-value associated with Γ and Δ
using Rosenbaum’s simultaneous sensitivity analysis

Δ

1.0 2.0 3.0 4.0 5.0 infinity

Γ

1.0 <.001 <.001 <.001 <.001 <.001 <.001

2.0 <.001 <.001 .006 .03 .07 .75

3.0 <.001 .006 .17 .50 .75 1

4.0 <.001 .03 .50 .89 .98 1

5.0 <.001 .07 .75 .98 .99 1

infinity <.001 .75 1 1 1 1
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Application to Liu et al. (2013)

Upper-bound of one-sided p-value associated with Γ and Δ
using Rosenbaum’s simultaneous sensitivity analysis

Δ

1.0 2.0 3.0 4.0 5.0 infinity

Γ

1.0 <.001 <.001 <.001 <.001 <.001 <.001

2.0 <.001 <.001 .006 .03 .07 .75

3.0 <.001 .006 .17 .50 .75 1

4.0 <.001 .03 .50 .89 .98 1

5.0 <.001 .07 .75 .98 .99 1

infinity <.001 .75 1 1 1 1

.05
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Application to Liu et al. (2013)

Upper-bound of one-sided p-value associated with Γ and Δ
using Rosenbaum’s simultaneous sensitivity analysis

Δ

1.0 2.0 3.0 4.0 5.0 infinity

Γ

1.0 <.001 <.001 <.001 <.001 <.001 <.001

2.0 <.001 <.001 .006 .03 .07 .75

3.0 <.001 .006 .17 .50 .75 1

4.0 <.001 .03 .50 .89 .98 1

5.0 <.001 .07 .75 .98 .99 1

infinity <.001 .75 1 1 1 1

.05

.05

.05

.05

.05
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Rosenbaum’s primal, dual and simultanenous methods answer which 
of the following questions?

38

Questions:
§ Consider a certain (range of) 𝑈, assess and correct bias

• what is the bias of the 𝑇𝑌 effect?
• what would the true 𝑇𝑌 effect be? (point & interval)

§ Characterize 𝑈 that nullifies the effect
• with what 𝑈 would the 𝑇𝑌 effect become stat. nonsig. or zero?
• Could there be such a 𝑈?



Rosenbaum’s primal, dual and simultanenous methods answer which 
of the following questions?

39

Questions:
§ Consider a certain (range of) 𝑈, assess and correct bias

• what is the bias of the 𝑇𝑌 effect?
• what would the true 𝑇𝑌 effect be? (point & interval)

§ Characterize 𝑈 that nullifies the effect
• with what 𝑈 would the 𝑇𝑌 effect become stat. nonsig. or zero?
• Could there be such a 𝑈?

If due to unobserved confounding, between the treated and control units in matched pairs, the 
odds of treatment differ by a factor of up to 2.8 and the odds of outcome (net of treatment) also 
differ by a factor of up to 2.8, then the true treatment effect may be statistically non-sig.



Comments
§ Brilliant idea!
§ Only two (instead of four) sensitivity parameters
§ Directly relevant when main analysis is matched analysis

• In practice, matching might be done only to obtain balance, with 
analysis then ignoring that data are matched. Often regression is used 
to adjust for any remaining imbalance in (observed) confounders.

§ Need to know the two numbers of discordant pairs
§ Conservative because considers things at the edge:

• When effect becomes non-sig, not when effect becomes zero
• Upper-bound of p-value, not simply p-value
• McNemar’s exact test tends to be conservative for small 𝑚

§ Can also be interpreted as sensitivity analysis for a binary 𝑈

40



Excel spreadsheet
41

Love TE (2008) Spreadsheet-based sensitivity analysis calculations for 
matched samples. Center for Health Care Research & Policy, Case 
Western Reserve University.
Available online at http://www.chrp.org/propensity



Other methods in this genre

§ Matched data, continuous outcome: use a modified Wilcoxon signed 
rank test (Rosenbaum 1987)

§ Sensitivity analysis in the context of matching with multiple controls 
(Gastwirth, Krieger & Rosenbaum 2000)

§ Sensitivity analysis in the context of propensity score weighting 
(McCaffrey et al. 2004; Ridgeway 2006)

Gastwirth, J. L., Krieger, a M., & Rosenbaum, P. R. (2000). Asymptotic Separability in Sensitivity Analysis. Journal of the Royal 
Statistical Society, 62, 545–555.
McCaffrey, D. F., Ridgeway, G., & Morral, A. (2004). Propensity score estimation with boosted regression for evaluating 
causal effects in observational studies. Psychological Methods, 9(4), 403–425. Retrieved from 
http://psycnet.apa.org/journals/met/9/4/403/
Ridgeway, G. (2006). Assessing the effect of race bias in post-traffic stop outcomes using propensity scores. Journal of 
Quantitative Criminology, 22(1), 1029. Retrieved from http://www.jstor.org/stable/23367478
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Methods covered

§ Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
§ Rosenbaum’s approach

• Sensitivity analysis for subclasses (Rosenbaum & Rubin 1983)
• Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, 

Rosenbaum 1998)
§ 2x2 tables and a binary 𝑈 (Greenland 1996; Harding 2003)
§ VanderWeele & Arah’s (2011) bias formulas for general 𝑌, 𝑇, 𝑈
§ Sensitivity analysis w/out assumptions/E-value (Ding & VanderWeele 2016, 

VanderWeele & Ding 2017)
§ Regression-based methods

• Simple linear system & omitted variable bias (Harding 2009)
• Complex non-linear systems (Lin, Psaty & Kronmal 1998)
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Greenland’s (1996) and Harding’s (2003) methods

§ Data as 2x2 table, either case-control or cohort
𝑌 = 1 (child suicide 

hospitalization)
𝑌 = 0 (child no suicide 

hospitalization)

𝑇 = 1 (mother suicide) 𝐴 𝐵

𝑇 = 0 (mother accident) 𝐶 𝐷

Greenland, S. (1996). Basic methods for sensitivity analysis of biases. International Journal of Epidemiology, 25(6), 1107–
1116. doi:10.1093/ije/25.6.1107
Harding, D. J. (2003). Counterfactual Models of Neighborhood Effects: The Effect of Neighborhood Poverty on Dropping Out 
and Teenage Pregnancy. American Journal of Sociology, 109(3), 676–719. doi:10.1086/379217
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Greenland’s (1996) and Harding’s (2003) methods

§ Data as 2x2 table, either case-control or cohort

§ For specified plausible binary unobserved 𝑈, unpack into two tables

𝑎# + 𝑎$ = 𝐴; 𝑏# + 𝑏$ = 𝐵; 𝑐# + 𝑐$ = 𝐶; 𝑑# + 𝑑$ = 𝐷

§ and conduct analysis using the two tables or a constructed dataset 
with 𝑇, 𝑌, 𝑈 to obtain 𝑂𝑅!"|#

𝑌 = 1 (child suicide 
hospitalization)

𝑌 = 0 (child no suicide 
hospitalization)

𝑇 = 1 (mother suicide) 𝐴 𝐵

𝑇 = 0 (mother accident) 𝐶 𝐷

𝑈 = 1
𝑌 = 1 𝑌 = 0

𝑇 = 1 𝑎# 𝑏#
𝑇 = 0 𝑐# 𝑑#

𝑈 = 0
𝑌 = 1 𝑌 = 0

𝑇 = 1 𝑎% 𝑏%
𝑇 = 0 𝑐% 𝑑%
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Greenland Harding

How to specify a plausible range of 𝑈?
3 sensitivity parameters (4 if allow 𝑇𝑈 interaction):

For details on table cells calculation, see Liu et al., which does an 
excellent job of explaining it for the case without 𝑇𝑈 interaction.

𝑇 𝑌

𝑈

OR#"

𝑇 𝑌

𝑈

P 𝑈 𝑇 = 0
P 𝑈 𝑇 = 1 OR#"OR!"

P 𝑈 = 1

46



Greenland’s and Harding’s methods can answer which of the 
following questions?

47

Questions:
§ Consider a certain (range of) 𝑈, assess and correct bias

• what is the bias of the 𝑇𝑌 effect?
• what would the true 𝑇𝑌 effect be? (point & interval)

§ Characterize 𝑈 that nullifies the effect
• with what 𝑈 would the 𝑇𝑌 effect become stat. nonsig. or zero?
• Could there be such a 𝑈?



Greenland’s and Harding’s methods can answer which of the 
following questions?

48

Questions:
§ Consider a certain (range of) 𝑈, assess and correct bias

• what is the bias of the 𝑇𝑌 effect?
• what would the true 𝑇𝑌 effect be? (point & interval)

§ Characterize 𝑈 that nullifies the effect
• with what 𝑈 would the 𝑇𝑌 effect become stat. nonsig. or zero?
• Could there be such a 𝑈?



§ Easy to understand
§ Relatively easy to implement
§ Corrected point estimate and confidence interval! J

§ How to deal with observed confounders 𝑿? 
Balance 𝑿 using propensity score methods and then conduct 
sensitivity analysis for 𝑿-balanced samples (or subsamples)
• Suclassification and then sensitivity analysis within subclasses 

(Rosenbaum & Rubin 1983)
• Matching (or weighting) and then use the matched/weighted sample as 

an 𝑿-balanced sample (ignoring matched) for sensitivity analysis 
(Harding 2003; Liu et al. 2013)
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Methods covered

§ Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
§ Rosenbaum’s approach

• Sensitivity analysis for subclasses (Rosenbaum & Rubin 1983)
• Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, 

Rosenbaum 1998)
§ 2x2 tables and a binary 𝑈 (Greenland 1996; Harding 2003)
§ VanderWeele & Arah’s (2011) bias formulas for general 𝑌, 𝑇, 𝑈
§ Sensitivity analysis w/out assumptions/E-value (Ding & VanderWeele 2016, 

VanderWeele & Ding 2017)
§ Regression-based methods

• Simple linear system & omitted variable bias (Harding 2009)
• Complex non-linear systems (Lin, Psaty & Kronmal 1998)
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VanderWeele & Arah’s (2011) general bias formulas

Very general!

For simplicity, let 𝑈 be binary, and consider ATE on the additive scale.

Vanderweele, T. J., & Arah, O. a. (2011). Bias formulas for sensitivity analysis of unmeasured confounding for general 
outcomes, treatments, and confounders. Epidemiology, 22(1), 42–52. doi:10.1097/EDE.0b013e3181f74493
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VanderWeele & Arah’s (2011) general bias formulas

§ Each individual has a potential outcome under treatment, 𝑌$, and a 
potential outcome under control, 𝑌%.

§ Treatment effect is: ATE = E 𝑌$ − E 𝑌%

Vanderweele, T. J., & Arah, O. a. (2011). Bias formulas for sensitivity analysis of unmeasured confounding for general 
outcomes, treatments, and confounders. Epidemiology, 22(1), 42–52. doi:10.1097/EDE.0b013e3181f74493
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VanderWeele & Arah’s (2011) general bias formulas

§ Each individual has a potential outcome under treatment, 𝑌$, and a 
potential outcome under control, 𝑌%.

§ Treatment effect is: ATE = E 𝑌$ − E 𝑌%
§ Treatment assignment is unconfounded (as good as random) given 

observed 𝑿 and unobserved 𝑈.

ATE =3
𝒙
3

-
E 𝑌 𝑇 = 1, 𝒙, 𝑢 − E 𝑌|𝑇 = 0, 𝒙, 𝑢 P 𝐮, 𝒙 .

Vanderweele, T. J., & Arah, O. a. (2011). Bias formulas for sensitivity analysis of unmeasured confounding for general 
outcomes, treatments, and confounders. Epidemiology, 22(1), 42–52. doi:10.1097/EDE.0b013e3181f74493
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VanderWeele & Arah’s (2011) general bias formulas

§ Each individual has a potential outcome under treatment, 𝑌$, and a 
potential outcome under control, 𝑌%.

§ Treatment effect is: ATE = E 𝑌$ − E 𝑌%
§ Treatment assignment is unconfounded (as good as random) given 

observed 𝑿 and unobserved 𝑈.

ATE =3
𝒙
3

-
E 𝑌 𝑇 = 1, 𝒙, 𝑢 − E 𝑌|𝑇 = 0, 𝒙, 𝑢 P 𝑢 𝒙 P 𝒙 .

Vanderweele, T. J., & Arah, O. a. (2011). Bias formulas for sensitivity analysis of unmeasured confounding for general 
outcomes, treatments, and confounders. Epidemiology, 22(1), 42–52. doi:10.1097/EDE.0b013e3181f74493
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VanderWeele & Arah’s (2011) general bias formulas

§ Each individual has a potential outcome under treatment 𝑌$ and a 
potential outcome under control 𝑌%.

§ Treatment effect is: ATE = E 𝑌$ − E 𝑌%
§ Treatment assignment is unconfounded (as good as random) given 

observed 𝑿 and unobserved 𝑈.

ATE =3
𝒙
3

-
E 𝑌 𝑇 = 1, 𝒙, 𝑢 − E 𝑌|𝑇 = 0, 𝒙, 𝑢 P 𝑢 𝒙 P 𝒙 .

§ Adjusting for 𝑿 but not 𝑈 gives

3
𝒙
E 𝑌 𝑇 = 1, 𝒙 − E 𝑌|𝑇 = 0, 𝒙 P 𝒙 .

§ Bias is the difference between these two quantities.
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General formula:

bias =
>

𝒙
E 𝑌 𝑇 = 1, 𝑈 = 1, 𝒙 − E 𝑌|𝑇 = 1, 𝑈 = 0, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝒙 P 𝒙 −

>
𝒙
E 𝑌 𝑇 = 0, 𝑈 = 1, 𝒙 − E 𝑌|𝑇 = 0, 𝑈 = 0, 𝒙 P 𝑈 = 1 𝑇 = 0, 𝒙 − P 𝑈 = 1 𝒙 P 𝒙
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General formula:

bias =
>

𝒙
E 𝑌 𝑇 = 1, 𝑈 = 1, 𝒙 − E 𝑌|𝑇 = 1, 𝑈 = 0, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝒙 P 𝒙 −

>
𝒙
E 𝑌 𝑇 = 0, 𝑈 = 1, 𝒙 − E 𝑌|𝑇 = 0, 𝑈 = 0, 𝒙 P 𝑈 = 1 𝑇 = 0, 𝒙 − P 𝑈 = 1 𝒙 P 𝒙

Strata could be strata of 𝑿 (eg female & college)
or strata (subclasses) of propensity score.

Complicated, but simplifies in some cases.

𝑈𝑇 within 𝑿 stratum𝑈𝑌 given 𝑇 within 𝑿 stratum

𝑇 𝑌

𝑿

𝑈
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If simplification 1: within 𝑿 stratum, no 𝑈𝑇 interaction

bias =
>

𝒙
E 𝑌 𝑈 = 1, 𝑇, 𝒙 − E 𝑌|𝑈 = 0, 𝑇, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝑇 = 0, 𝒙 P 𝒙
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If simplification 1: within 𝑿 stratum, no 𝑈𝑇 interaction

bias =
>

𝒙
E 𝑌 𝑈 = 1, 𝑇, 𝒙 − E 𝑌|𝑈 = 0, 𝑇, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝑇 = 0, 𝒙 P 𝒙

plus simplification 2: the 𝑈𝑌 relationship given 𝑇 does not vary across 𝑿 strata
bias =

E 𝑌 𝑈 = 1, 𝑇, 𝑿 − E 𝑌|𝑈 = 0, 𝑇, 𝑿 >
𝒙
P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝑇 = 0, 𝒙 P 𝒙
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If simplification 1: within 𝑿 stratum, no 𝑈𝑇 interaction

bias =
>

𝒙
E 𝑌 𝑈 = 1, 𝑇, 𝒙 − E 𝑌|𝑈 = 0, 𝑇, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝑇 = 0, 𝒙 P 𝒙

plus simplification 2: the 𝑈𝑌 relationship given 𝑇 does not vary across 𝑿 strata
bias =

E 𝑌 𝑈 = 1, 𝑇, 𝑿 − E 𝑌|𝑈 = 0, 𝑇, 𝑿 >
𝒙
P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝑇 = 0, 𝒙 P 𝒙

or plus simplification 3: the 𝑈𝑇 relationship does not vary across 𝑿 strata

bias =
P 𝑈 = 1 𝑇 = 1, 𝑿 − P 𝑈 = 1 𝑇 = 0, 𝑿 >

𝒙
E 𝑌 𝑈 = 1, 𝑇, 𝒙 − E 𝑌|𝑈 = 0, 𝑇, 𝒙 P 𝒙
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If simplification 1: within 𝑿 stratum, no 𝑈𝑇 interaction

bias =
>

𝒙
E 𝑌 𝑈 = 1, 𝑇, 𝒙 − E 𝑌|𝑈 = 0, 𝑇, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝑇 = 0, 𝒙 P 𝒙

plus simplification 2: the 𝑈𝑌 relationship given 𝑇 does not vary across 𝑿 strata
bias =

E 𝑌 𝑈 = 1, 𝑇, 𝑿 − E 𝑌|𝑈 = 0, 𝑇, 𝑿 >
𝒙
P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝑇 = 0, 𝒙 P 𝒙

or plus simplification 3: the 𝑈𝑇 relationship does not vary across 𝑿 strata

bias =
P 𝑈 = 1 𝑇 = 1, 𝑿 − P 𝑈 = 1 𝑇 = 0, 𝑿 >

𝒙
E 𝑌 𝑈 = 1, 𝑇, 𝒙 − E 𝑌|𝑈 = 0, 𝑇, 𝒙 P 𝒙

or plus both simplifications 2 and 3
bias = E 𝑌 𝑈 = 1, 𝑇, 𝑿 − E 𝑌|𝑈 = 0, 𝑇, 𝑿 P 𝑈 = 1 𝑇 = 1, 𝑿 − P 𝑈 = 1 𝑇 = 0, 𝑿

61



How does this translate to sensitivity parameters?
How does it relate to prior methods?

Consider the simplest formula, with all three simplifications,

bias = E 𝑌 𝑈 = 1, 𝑇, 𝑿 − E 𝑌|𝑈 = 0, 𝑇, 𝑿 P 𝑈 = 1 𝑇 = 1, 𝑿 − P 𝑈 = 1 𝑇 = 0, 𝑿

RD!#|",𝑿 PD#"|𝑿

𝑇 𝑌

𝑿

𝑈
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How does this translate to sensitivity parameters?
How does it relate to prior methods?

Consider the simplest formula, with all three simplifications,

bias = E 𝑌 𝑈 = 1, 𝑇, 𝑿 − E 𝑌|𝑈 = 0, 𝑇, 𝑿 P 𝑈 = 1 𝑇 = 1, 𝑿 − P 𝑈 = 1 𝑇 = 0, 𝑿

RD!#|",𝑿 PD#"|𝑿

𝑇 𝑌

𝑿

𝑈
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In the 𝑿 stratum specific case (or no 𝑿 case), 
alternatives to specifying PD#"|𝒙:
§ To combine a relative measure of association

PR#"|𝒙 or RR"#|𝒙 or OR"#|𝒙
and a prevalence

P 𝑈 = 1 𝑇 = 0, 𝒙 or P 𝑈 = 1 𝒙
§ To specify two prevalences

P 𝑈 = 1 𝑇 = 0, 𝒙 or P 𝑈 = 1 𝑇 = 1, 𝒙

With fewer simplications, more parameters!



Website for sensitivity analyses in similar spirit
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https://jiangtammy.shinyapps.io/quantitative_bias_analysis/

Lash TL, Fox MP, Fink AK. Applying Quantitative Bias Analysis to Epidemiologic Data. 
New York, NY: Springer New York; 2009. doi:10.1007/978-0-387-87959-8



Methods covered

§ Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
§ Rosenbaum’s approach

• Sensitivity analysis for subclasses (Rosenbaum & Rubin 1983)
• Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, 

Rosenbaum 1998)
§ 2x2 tables and a binary 𝑈 (Greenland 1996; Harding 2003)
§ VanderWeele & Arah’s (2011) bias formulas for general 𝑌, 𝑇, 𝑈
§ Sensitivity analysis w/out assumptions/E-value (Ding & VanderWeele 2016, 

VanderWeele & Ding 2017)
§ Regression-based methods

• Simple linear system & omitted variable bias (Harding 2009)
• Complex non-linear systems (Lin, Psaty & Kronmal 1998)

65



A regression-based approach: sensitivity analysis 
based on omitted variable bias (Harding 2009)

§ 𝑇 is binary (smoking) – my example, not 
Harding’s.

§ 𝑌 is binary or continuous (obesity/weight).
§ 𝑈 is continuous (depressive symptom 

severity), variance fixed at 1, independent of 
𝑿 (think 𝑿 have been “regressed out” of 𝑈).

§ Rely on linear models

E 𝑌 = 𝛼! + 𝛽!0𝑋 + 𝛽!"𝑇 + 𝛽!#𝑈
E 𝑇 = 𝛼" + 𝛽"0𝑋 + 𝛽"#𝑈

§ Need to standardize 𝑇, get bias 𝛽"#𝛽!#
𝑡𝛽!" = 𝑜𝛽!" − 𝛽"#𝛽!#

Harding, D. J. (2009). Collateral Consequences of Violence in Disadvantaged Neighborhoods. Social Forces, 88(2), 757–784. 
doi:10.1353/sof.0.0281

𝑇 𝑌

𝑿

𝑈

𝛽!" 𝛽#"

Var 𝑈 = 1

66



Comments:
§ Would like to not standardize 𝑇

Simple fix: Shift the representation of the 𝑈𝑇 relationship 
from 𝛽"# (RD of treatment associated with one SD difference in 𝑈) 
to 𝛽#" (the difference in mean 𝑈 comparing 𝑇 = 1 and 𝑇 = 0). 
Then

𝑡𝛽!" = 𝑜𝛽!" − 𝛽#"𝛽!#

Note that this difference in means is not a causal effect (causation is 
assumed to be the opposite direction).

§ Need to be explicit about the assumptions of the linear system
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More regression based: Lin, Psaty & Kronmal (1998)
Very interesting paper!
§ 𝑇 binary
§ 𝑌 binary (log-linear or logistic) or survival time
§ 𝑈 binary or normal
§ allowing 𝑇𝑈 interaction

Complicated equations are simplified based on the 
assumption that 𝑈 and 𝑿 are independent 
conditional on 𝑇, which is violated because 𝑇 is a 
collider (Hernan & Robins 1999).

If no 𝑿, reduce to simpler results.

𝑇 𝑌

𝑿

𝑈

Lin, D. Y., Psaty, B. M., & Kronmal, R. A. (1998). Assessing the sensitivity of regression results to unmeasured confounders in 
observational studies. Biometrics, 54(3), 948–963. doi:10.2307/2533848
Hernan, M. A., & Robins, J. M. (1999). Letter to the Editor: Assessing the sentivity of regression results to unmeasured 
confounders in observational studies. Biometrics, 55, 1316–1317.

VanderWeele & Arah note that this paper offers an alternative assumption 
that the conditional mean of 𝑈 is additive in 𝑿 and 𝑇 which is helpful for 
deriving the bias.

68



Methods covered

§ Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
§ Rosenbaum’s approach

• Sensitivity analysis for subclasses (Rosenbaum & Rubin 1983)
• Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, 

Rosenbaum 1998)
§ 2x2 tables and a binary 𝑈 (Greenland 1996; Harding 2003)
§ VanderWeele & Arah’s (2011) bias formulas for general 𝑌, 𝑇, 𝑈
§ Regression-based methods

• Simple linear system & omitted variable bias (Harding 2009)
• Complex non-linear systems (Lin, Psaty & Kronmal 1998)

§ Sensitivity analysis w/out assumptions/E-value (Ding & VanderWeele 2016, 
VanderWeele & Ding 2017)
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Ding and VanderWeele (2016)
𝑜𝑅𝑅#!|0
𝑡𝑅𝑅#!|0

≥
max 𝑃𝑅"!|0 max 𝑅𝑅#"|0

max 𝑃𝑅"!|0 +max 𝑅𝑅#"|0 − 1
=

𝛽"!𝛽#"
𝛽"! +𝛽#" −1
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E-value for sensitivity analysis (VanderWeele and 
Ding 2017)

§ 𝑇 is binary (maternal breastfeeding)
§ 𝑌 is binary (infant respiratory death)
§ 𝑈 is binary (maternal smoking status)

§ Based on the bias factor

𝐵 =
𝛽#"𝛽!#

𝛽#" +𝛽!# −1
§ E-value: the joint minimum strength of 

association on the risk ratio scale that an 
unmeasured confounder would need to have 
with the treatment and outcome (controlling 
for X) to explain away the observed risk 
ratio of 𝛽!"

𝐸𝑣𝑎𝑙𝑢𝑒 = 𝛽!" + 𝛽!" ∗ (𝛽!" − 1)

VanderWeele, T.J., Ding, P. (2017). Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med. 
2017;167:268-274. doi:10.7326/M16-2607 

𝑇 𝑌

𝑿

𝑈

𝛽"! 𝛽#"
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Interpretation:
§ “The observed risk ratio of 𝛽!" could be explained away by an 

unmeasured confounder that was associated with both the treatment 
and the outcome by a risk ratio of [insert E-value]-fold each, above and 
beyond the measured confounders, but weaker confounding could not 
do so.”

§ The higher the E-value, the stronger the unmeasured confounding 
associations must be to produce bias equal to the observed treatment-
outcome association.

Notes:
§ For RR <1, must take inverse of RR first, then apply the formula
§ Good to also report E-value of confidence limit closest to the the null
§ Paper summarizes calculations for other effect measures (e.g., OR, IRR)
§ E-value not to be confused with P-value! 

E-value calculator: https://www.evalue-calculator.com (covers a range 
of scenarios
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https://www.evalue-calculator.com/


Methods covered

§ Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
§ Rosenbaum’s approach

• Sensitivity analysis for subclasses (Rosenbaum & Rubin 1983)
• Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, 

Rosenbaum 1998)
§ 2x2 tables and a binary 𝑈 (Greenland 1996; Harding 2003)
§ VanderWeele & Arah’s (2011) bias formulas for general 𝑌, 𝑇, 𝑈
§ Regression-based methods

• Simple linear system & omitted variable bias (Harding 2009)
• Complex non-linear systems (Lin, Psaty & Kronmal 1998)

§ Sensitivity analysis w/out assumptions/E-value (Ding & VanderWeele 2016, 
VanderWeele & Ding 2017)
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Other aproaches
§ Simulation

• Arah, O., Chiba, Y., & Greenland, S. (2008). Bias formulas for external adjustment and 
sensitivity analysis of unmeasured confounders. Annals of Epidemiology, 18(8), 637–
46. doi:10.1016/j.annepidem.2008.04.003

• Steenland, K., & Greenland, S. (2004). Monte Carlo Sensitivity Analysis and Bayesian 
Analysis of Smoking as an Unmeasured Confounder in a Study of Silica and Lung 
Cancer. American Journal of Epidemiology, 160(4), 384–392. doi:10.1093/aje/kwh211

§ Bayesian methods
• Steenland & Greenland (2004)
• McCandless, L. C., Gustafson, P., & Levy, A. (2007). Bayesian sensitivity analysis for 

unmeasured confounding in observational studies. Statistics in Medicine, 26, 2331–
2347. doi:10.1002/sim

§ Using external data to adjust results
• Stürmer, T., Schneeweiss, S., Avorn, J., & Glynn, R. J. (2005). Adjusting effect 

estimates for unmeasured confounding with validation data using propensity score 
calibration. American Journal of Epidemiology, 162(3), 279–89. 
doi:10.1093/aje/kwi192

§ Design sensitivity
• Zubizarreta, J. R., Cerdá, M., & Rosenbaum, P. R. (2013). Effect of the 2010 Chilean 

earthquake on posttraumatic stress: reducing sensitivity to unmeasured bias through 
study design. Epidemiology, 24(1), 79–87. doi:10.1097/EDE.0b013e318277367e
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