Sensitivity Analysis for Unobserved Confounding

Trang Quynh Nguyen
(special thanks to Elizabeth Stuart)

Johns Hopkins Bloomberg School of Public Health, Department of Mental Health trang.nguyen@jhu.edu

PHQR772: Advanced Topics in Pharmacoepidemiology
University of Maryland
April 13, 2020

Confounding

Adjustment for Observed Confounding

- Adjust for \boldsymbol{X} via multiple regression or propensity score methods
- Assumption: No unobserved confounders (no "hidden" bias)

Unobserved Confounding

Unobserved Confounding in Pharmacoepidemiology

Table 1. Clinical, behavioral, and socioeconomic factors often not measured in pharmacoepidemiologic database studies and that may cause residual confounding

Potential confounders often unmeasured in pharmacoepidemiologic database studies	Examples of drug-disease outcome associations possibly affected by residual confounding in epidemiologic database studies			
	Anti-TNF α therapy and lymphoma in patients with rheumatoid arthritis	Statins and fractures	Cox-2 inhibitors and myocardial infarction	NSAIDs and short-term mortality
Body mass index		X	X	X
Over-the-counter aspirin use,			X	
Smoking		X	X	X
Frailty		X	X	X
Functional impairment		X		
Cognitive impairment		X		
Educational attainment		X	X	X
Income status		X	X	X
Laboratory values, for example, EBV antibody titer, lipid level, CRP level	X		X	
Results of invasive and non-invasive exams, for example, bone mineral density measure (DXA), ECG,		X	X	
Disease-specific severity markers	X			

Sensitivity Analysis for an Unobserved Confounder

Goal of a formal sensitivity analysis (Rosenbaum 1995, about Cornfield):
"replacing
a general qualitative statement that applies in all observational studies
by a quantitative statement that is specific to what is observed in a particular study"
"instead of saying
that an association between treatment and outcome does not imply causation, that hidden biases can explain observed associations,
they say that to explain the association seen in a particular study, one would need a hidden bias of a particular magnitude."

Sensitivity Analysis for an Unobserved Confounder

Questions:

- Consider a certain (range of) U, assess and correct bias
- what is the bias of the $T Y$ effect?
- what would the true $T Y$ effect be? (point \& interval)
- Characterize U that nullifies the effect
- with what U would the $T Y$ effect become stat. nonsig. or zero?
- Could there be such a U ?

Main message

- Many flavors
- Depends on specific situation (data, main analysis)
- Depends on question asked

Caveat: Only several methods will be covered to get you started. Far from exhaustive.

Methods covered

- Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
- Rosenbaum's approach
- Sensitivity analysis for subclasses (Rosenbaum \& Rubin 1983)
- Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, Rosenbaum 1998)
- 2×2 tables and a binary U (Greenland 1996; Harding 2003)
- VanderWeele \& Arah's (2011) bias formulas for general Y, T, U
- Sensitivity analysis w/out assumptions/E-value (Ding \& VanderWeele 2016, VanderWeele \& Ding 2017)
- Regression-based methods
- Simple linear system \& omitted variable bias (Harding 2009)
- Complex non-linear systems (Lin, Psaty \& Kronmal 1998)

Original example: Smoking and Lung Cancer

- R. A. Fisher (1958) thought that the observed relationship between smoking and lung cancer was due to some unobserved genetic factor that made people more susceptible to both.
- Cornfield et al. (1959) analysis apparently changed his mind: that genetic factor would have to be more strongly related to smoking and to lung cancer than anything already observed.

Fisher RA. Cigarettes, cancer and statistics. Centennial Rev Arts and Sciences. 2:151, Michigan State University, 1958.
"if cigarette smokers have 9 times the risk of nonsmokers for developing lung cancer, and this is not because cigarette smoke is a causal agent, but only because cigarette smokers produce hormone X,
then the proportion of hormone X-producers among cigarette smokers must be at least 9 times greater than that of nonsmokers.

If the relative prevalence of hormone X-producers is considerably less than ninefold, then hormone X cannot account for the magnitude of the apparent effect."
(Cornfield et al., 1959)
"if cigarette smokers have 9 times the risk of nonsmokers for developing lung cancer, and this is not because cigarette smoke is a causal agent, but only because cigarette smokers produce hormone X ,
then the proportion of hormone X-producers among cigarette smokers must be at least 9 times greater than that of nonsmokers.

If the relative prevalence of hormone X-producers is considerably less than ninefold, then hormone X cannot account for the magnitude of the apparent effect."
(Cornfield et al., 1959)

$$
\text { smoking } T \xrightarrow{\mathrm{oRR}_{Y T}=9} Y^{\text {lung cancer }}
$$

subscript ${ }_{Y T}$ means T predicting Y
"if cigarette smokers have 9 times the risk of nonsmokers for developing lung cancer, and this is not because cigarette smoke is a causal agent, but only because cigarette smokers produce hormone X ,
then the proportion of hormone X-producers among cigarette smokers must be at least 9 times greater than that of nonsmokers.

If the relative prevalence of hormone X-producers is considerably less than ninefold, then hormone X cannot account for the magnitude of the apparent effect."
(Cornfield et al., 1959)

hormone X

"if cigarette smokers have 9 times the risk of nonsmokers for developing lung cancer,

 and this is not because cigarette smoke is a causal agent, but only because cigarette smokers produce hormone X ,then the proportion of hormone X-producers among cigarette smokers must be at least 9 times greater than that of nonsmokers.

If the relative prevalence of hormone X-producers is considerably less than ninefold, then hormone X cannot account for the magnitude of the apparent effect."
(Cornfield et al., 1959)

hormone X
(simple proof in appendix A)

Cornfield et al. answered which of the following questions?

Questions:

- Consider a certain (range of) U, assess and correct bias
- what is the bias of the $T Y$ effect?
- what would the true $T Y$ effect be? (point \& interval)
- Characterize U that nullifies the effect
- with what U would the $T Y$ effect become stat. nonsig. or zero?
- Could there be such a U ?

Cornfield et al. answered which of the following questions?

Questions:

- Consider a certain (range of) U, assess and correct bias
- what is the bias of the $T Y$ effect?
- what would the true $T Y$ effect be? (point \& interval)
- Characterize U that nullifies the effect
- with what U would the $T Y$ effect become stat. nonsig. or zero?
- Could there be such a U ?

Also, need methods that

accommodate both observed confounders and unobserved confounding!

Treatment is unconfounded given observed X and unobserved U.

Rosenbaum's approach

use propensity score methods to get balance on observed confounders \boldsymbol{X} and then
conduct sensitivity analysis on an unobserved confounder U

Rosenbaum \& Rubin (1983) with subclassification

Usual analysis: propensity score subclassification to balance \boldsymbol{X} and estimate the average treatment effect (ATE), $\mathrm{E}\left[Y_{1}\right]-\mathrm{E}\left[Y_{0}\right]$ (risk difference of symptom relief at six months)

Rosenbaum \& Rubin (1983) with subclassification

Sensitivity analysis:

- propensity score subclassification to balance \boldsymbol{X}
- within each subclass, sensitivity analysis on how U affects the ATE
- average over the subclasses

Rosenbaum \& Rubin's method answers which of the following questions?

Questions:

- Consider a certain (range of) U, assess and correct bias
- what is the bias of the $T Y$ effect?
- what would the true $T Y$ effect be? (point \& interval)
- Characterize U that nullifies the effect
- with what U would the $T Y$ effect become stat. nonsig. or zero?
- Could there be such a U ?

Rosenbaum \& Rubin's method answers which of the following questions?

Questions:

- Consider a certain (range of) U, assess and correct bias
- what is the bias of the $T Y$ effect?
- what would the true $T Y$ effect be? (point \& interval)
- Characterize U that nullifies the effect
- with what U would the $T Y$ effect become stat. nonsig. or zero?
- Could there be such a U ?

Rosenbaum \& colleagues with matched pair data

Similar idea:

- Matching to balance \boldsymbol{X} in each pair
- Find values of sensitivity parameters concerning an unobserved U where the true $T Y$ effect may be no longer statistically significant

Rosenbaum, P. R. (1987). Sensitivity analysis for certain permutational inferences in matched observational studies.

Starting point

If no unobserved confounding, after matching on X ,
the two individuals in a matched pair
would have equal probability of treatment assignment and equal odds of outcome for the same treatment
(ignorability/as if randomized)

Three methods for a binary Y : primal, dual and simultaneous

- Due to some unobserved U that is extremely predictive of the outcome, their odds of treatment assignment are different, $O R_{T U} \neq 1$
- Say the two odds are different by at most a factor of $\Gamma>1$

$$
\frac{1}{\Gamma} \leq \mathrm{OR}_{T U} \leq \Gamma
$$

- Then tOR ${ }_{Y T}$ is different from oOR ${ }_{Y T}$, and the true p-value for treatment effect is different from the observed p-value.
- What is the value of Γ where $\operatorname{tOR}_{Y T}$ may become statistically non-sig?

Three methods for a binary Y : primal, dual and simultaneous

- Due to some unobserved U that is extremely correlated with treatment assignment, their odds of outcome are different, $O R_{Y U} \neq 1$
- Say these two odds are different by at most a factor of $\Delta>1$

$$
\frac{1}{\Delta} \leq 0 R_{Y U} \leq \Delta
$$

- Then tOR ${ }_{Y T}$ is different from oOR ${ }_{Y T}$, and the true p-value for treatment effect is different from the observed p-value.
- What is the value of Δ where $\operatorname{tOR}_{Y T}$ may become statistically non-sig?

Three methods for a binary Y : primal, dual and simultaneous

Simultaneous
within a matched pair:

- Due to some unobserved U, their odds of treatment are different, $O R_{T U} \neq 1$, and their odds of outcome are different, $O R_{Y U} \neq 1$
- Say these differences are bounded by factors of Γ and Δ (both >1)

$$
\frac{1}{\Gamma} \leq 0 R_{T U} \leq \Gamma, \quad \frac{1}{\Delta} \leq 0 \mathrm{R}_{Y U} \leq \Delta
$$

- Then tOR ${ }_{Y T}$ is different from oOR ${ }_{Y T}$, and the true p-value for treatment effect is different from the observed p-value.
- What are the values of Γ and Δ where tOR $_{Y T}$ may be statistically non-sig?

Three methods for a binary Y : primal, dual and simultaneous

Simultaneous

Dual

$$
\begin{aligned}
& \frac{1}{\Gamma} \leq \mathrm{OR}_{T U} \leq \Gamma \\
& \frac{1}{\Delta} \leq \mathrm{OR}_{Y U} \leq \Delta \\
& \Gamma>1, \Delta>1
\end{aligned}
$$

What are the values of Γ and/or Δ where toR $_{Y T}$ is statistically non-sig?

using a modified McNemar's exact test for paired data

using a modified McNemar's exact test for paired data

Liu, Kuramoto \& Stuart (2013) example:

		Mother death by accident		
		Child suicide hopspitalization	Child no suicide hospitalization	
Mother death by suicide	Child suicide hospitalization	7	226	233
	Child no suicide hospitalization	121	5246	5367
		128	5472	5600

using a modified McNemar's exact test for paired data

$$
\begin{equation*}
T=0 \tag{31}
\end{equation*}
$$

\[

\]

Original test:

- H0: for discordant pair, equal probability (0.5) of each type
- one-sided p-value = probability of observing b or more pairs of type [10] among $m=b+c$ discordant pairs

$$
p=\sum_{i=b}^{m}\binom{m}{i}(0.5)^{i}(0.5)^{m-i}
$$

$\mathrm{m}=10, \mathrm{~b}=9, \mathrm{pi}=0.5$

using a modified McNemar's exact test for paired data

\[

\]

Original test:

- H0: for discordant pairs, equal probability (0.5) of each type
- one-sided p-value = probability of observing b or more pairs of type [10] among $m=b+c$ discordant pairs

$$
p=\sum_{i=b}^{m}\binom{m}{i}(0.5)^{i}(0.5)^{m-i}
$$

Modified test:

- H0: for discordant pairs, probability π of type [10], $(1-\pi)$ of type [01] primal: $\frac{1}{1+\Gamma} \leq \pi \leq \frac{\Gamma}{1+\Gamma}$; dual: $\frac{1}{1+\Delta} \leq \pi \leq \frac{\Delta}{1+\Delta}$; simultaneous: $0.5 \leq \pi \leq \frac{\Gamma}{1+\Gamma} \cdot \frac{\Delta}{1+\Delta}+\frac{1}{1+\Gamma} \cdot \frac{1}{1+\Delta}$ - plugging in the bounds of π gives bounds of p-value:

$$
p=\sum_{i=b}^{m}\binom{m}{i} \pi^{i}(1-\pi)^{m-i}
$$

- which are the values of Γ and/or Δ where p-value upper-bound ≥ 0.05
$\mathrm{m}=10, \mathrm{~b}=9$, upper-bound $\mathrm{pi}=0.625(\Gamma=\Delta=3)$

Application to Liu et al. (2013)
Upper-bound of one-sided p -value associated with Γ and Δ using Rosenbaum's simultaneous sensitivity analysis

Application to Liu et al. (2013)

Upper-bound of one-sided p-value associated with Γ and Δ using Rosenbaum's simultaneous sensitivity analysis

Application to Liu et al. (2013)
Upper-bound of one-sided p -value associated with Γ and Δ using Rosenbaum's simultaneous sensitivity analysis

Rosenbaum's primal, dual and simultanenous methods answer which of the following questions?

Questions:

- Consider a certain (range of) U, assess and correct bias
- what is the bias of the $T Y$ effect?
- what would the true $T Y$ effect be? (point \& interval)
- Characterize U that nullifies the effect
- with what U would the $T Y$ effect become stat. nonsig. or zero?
- Could there be such a U ?

Rosenbaum's primal, dual and simultanenous methods answer which of the following questions?

Questions:

- Consider a certain (range of) U, assess and correct bias
- what is the bias of the $T Y$ effect?
- what would the true $T Y$ effect be? (point \& interval)
- Characterize U that nullifies the effect
- with what U would the $T Y$ effect become stat. nonsig. or zero?
- Could there be such a U ?

If due to unobserved confounding, between the treated and control units in matched pairs, the odds of treatment differ by a factor of up to 2.8 and the odds of outcome (net of treatment) also differ by a factor of up to 2.8 , then the true treatment effect may be statistically non-sig.

Comments

- Brilliant idea!
- Only two (instead of four) sensitivity parameters
- Directly relevant when main analysis is matched analysis
- In practice, matching might be done only to obtain balance, with analysis then ignoring that data are matched. Often regression is used to adjust for any remaining imbalance in (observed) confounders.
- Need to know the two numbers of discordant pairs
- Conservative because considers things at the edge:
- When effect becomes non-sig, not when effect becomes zero
- Upper-bound of p-value, not simply p-value
- McNemar's exact test tends to be conservative for small m
- Can also be interpreted as sensitivity analysis for a binary U

Excel spreadsheet

Love TE (2008) Spreadsheet-based sensitivity analysis calculations for matched samples. Center for Health Care Research \& Policy, Case Western Reserve University. Available online at http://www.chrp.org/propensity

Other methods in this genre

- Matched data, continuous outcome: use a modified Wilcoxon signed rank test (Rosenbaum 1987)
- Sensitivity analysis in the context of matching with multiple controls (Gastwirth, Krieger \& Rosenbaum 2000)
- Sensitivity analysis in the context of propensity score weighting (McCaffrey et al. 2004; Ridgeway 2006)

Methods covered

- Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
- Rosenbaum's approach
- Sensitivity analysis for subclasses (Rosenbaum \& Rubin 1983)
- Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, Rosenbaum 1998)
- 2×2 tables and a binary U (Greenland 1996; Harding 2003)
- VanderWeele \& Arah's (2011) bias formulas for general Y, T, U
- Sensitivity analysis w/out assumptions/E-value (Ding \& VanderWeele 2016, VanderWeele \& Ding 2017)
- Regression-based methods
- Simple linear system \& omitted variable bias (Harding 2009)
- Complex non-linear systems (Lin, Psaty \& Kronmal 1998)

Greenland's (1996) and Harding's (2003) methods

- Data as 2×2 table, either case-control or cohort

	$Y=1$ (child suicide hospitalization)	$Y=0$ (child no suicide hospitalization)
$T=1$ (mother suicide)	A	B
$T=0$ (mother accident)	C	D

Greenland's (1996) and Harding's (2003) methods

- Data as 2×2 table, either case-control or cohort

	$Y=1$ (child suicide hospitalization)	$Y=0$ (child no suicide hospitalization)
$T=1$ (mother suicide)	A	B
$T=0$ (mother accident)	C	D

- For specified plausible binary unobserved U, unpack into two tables

$U=1$				$U=0$	
$\begin{aligned} & T=1 \\ & T=0 \end{aligned}$	$=$	$=0$	$\begin{aligned} & T=1 \\ & T=0 \end{aligned}$	$=$	$Y=0$
	a_{1}	b_{1}		a_{0}	b_{0}
	c_{1}	d_{1}		c_{0}	d_{0}

- and conduct analysis using the two tables or a constructed dataset with T, Y, U to obtain $O R_{Y T \mid U}$

How to specify a plausible range of U ?
3 sensitivity parameters (4 if allow TU interaction):

Greenland

For details on table cells calculation, see Liu et al., which does an excellent job of explaining it for the case without $T U$ interaction.

Greenland's and Harding's methods can answer which of the following questions?

Questions:

- Consider a certain (range of) U, assess and correct bias
- what is the bias of the $T Y$ effect?
- what would the true TY effect be? (point \& interval)
- Characterize U that nullifies the effect
- with what U would the $T Y$ effect become stat. nonsig. or zero?
- Could there be such a U ?

Greenland's and Harding's methods can answer which of the following questions?

Questions:

- Consider a certain (range of) U, assess and correct bias
- what is the bias of the $T Y$ effect?
- what would the true $T Y$ effect be? (point \& interval)
- Characterize U that nullifies the effect
- with what U would the $T Y$ effect become stat. nonsig. or zero?
- Could there be such a U ?
- Easy to understand
- Relatively easy to implement
- Corrected point estimate and confidence interval! ©
- How to deal with observed confounders X ?

Balance \boldsymbol{X} using propensity score methods and then conduct sensitivity analysis for \boldsymbol{X}-balanced samples (or subsamples)

- Suclassification and then sensitivity analysis within subclasses (Rosenbaum \& Rubin 1983)
- Matching (or weighting) and then use the matched/weighted sample as an \boldsymbol{X}-balanced sample (ignoring matched) for sensitivity analysis (Harding 2003; Liu et al. 2013)

Methods covered

- Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
- Rosenbaum's approach
- Sensitivity analysis for subclasses (Rosenbaum \& Rubin 1983)
- Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, Rosenbaum 1998)
- 2×2 tables and a binary U (Greenland 1996; Harding 2003)
- VanderWeele \& Arah's (2011) bias formulas for general Y, T, U
- Sensitivity analysis w/out assumptions/E-value (Ding \& VanderWeele 2016, VanderWeele \& Ding 2017)
- Regression-based methods
- Simple linear system \& omitted variable bias (Harding 2009)
- Complex non-linear systems (Lin, Psaty \& Kronmal 1998)

VanderWeele \& Arah's (2011) general bias formulas

Very general!
For simplicity, let U be binary, and consider ATE on the additive scale.

VanderWeele \& Arah's (2011) general bias formulas

- Each individual has a potential outcome under treatment, Y_{1}, and a potential outcome under control, Y_{0}.
- Treatment effect is: $\mathrm{ATE}=\mathrm{E}\left[Y_{1}\right]-\mathrm{E}\left[Y_{0}\right]$

VanderWeele \& Arah's (2011) general bias formulas

- Each individual has a potential outcome under treatment, Y_{1}, and a potential outcome under control, Y_{0}.
- Treatment effect is: ATE $=\mathrm{E}\left[Y_{1}\right]-\mathrm{E}\left[Y_{0}\right]$
- Treatment assignment is unconfounded (as good as random) given observed \boldsymbol{X} and unobserved U.

$$
\mathrm{ATE}=\sum_{x} \sum_{u}\{\mathrm{E}[Y \mid T=1, \boldsymbol{x}, u]-\mathrm{E}[Y \mid T=0, \boldsymbol{x}, u]\} \mathrm{P}(\mathbf{u}, \boldsymbol{x}) .
$$

VanderWeele \& Arah's (2011) general bias formulas

- Each individual has a potential outcome under treatment, Y_{1}, and a potential outcome under control, Y_{0}.
- Treatment effect is: ATE $=\mathrm{E}\left[Y_{1}\right]-\mathrm{E}\left[Y_{0}\right]$
- Treatment assignment is unconfounded (as good as random) given observed \boldsymbol{X} and unobserved U.

$$
\mathrm{ATE}=\sum_{x} \sum_{u}\{\mathrm{E}[Y \mid T=1, \boldsymbol{x}, u]-\mathrm{E}[Y \mid T=0, \boldsymbol{x}, u]\} \mathrm{P}(u \mid \boldsymbol{x}) \mathrm{P}(\boldsymbol{x}) .
$$

VanderWeele \& Arah's (2011) general bias formulas

- Each individual has a potential outcome under treatment Y_{1} and a potential outcome under control Y_{0}.
- Treatment effect is: ATE $=\mathrm{E}\left[Y_{1}\right]-\mathrm{E}\left[Y_{0}\right]$
- Treatment assignment is unconfounded (as good as random) given observed \boldsymbol{X} and unobserved U.

$$
\mathrm{ATE}=\sum_{x} \sum_{u}\{\mathrm{E}[Y \mid T=1, \boldsymbol{x}, u]-\mathrm{E}[Y \mid T=0, \boldsymbol{x}, u]\} \mathrm{P}(u \mid \boldsymbol{x}) \mathrm{P}(\boldsymbol{x})
$$

- Adjusting for \boldsymbol{X} but not U gives

$$
\sum_{x}\{\mathrm{E}[Y \mid T=1, x]-\mathrm{E}[Y \mid T=0, x]\} \mathrm{P}(\boldsymbol{x}) .
$$

- Bias is the difference between these two quantities.

General formula:

bias $=$

$$
\begin{aligned}
& \sum_{x}\{\mathrm{E}[Y \mid T=1, U=1, x]-\mathrm{E}[Y \mid T=1, U=0, x]\}[\mathrm{P}(U=1 \mid T=1, x)-\mathrm{P}(U=1 \mid x)] \mathrm{P}(x)- \\
& \sum_{x}\{\mathrm{E}[Y \mid T=0, U=1, x]-\mathrm{E}[Y \mid T=0, U=0, x]\}[\mathrm{P}(U=1 \mid T=0, x)-\mathrm{P}(U=1 \mid x)] \mathrm{P}(x)
\end{aligned}
$$

General formula:

bias $=$

Strata could be strata of \boldsymbol{X} (eg female \& college) or strata (subclasses) of propensity score.

Complicated, but simplifies in some cases.

If simplification 1: within X stratum, no $U T$ interaction bias $=$
$\sum_{x}\{\mathrm{E}[Y \mid U=1, T, x]-\mathrm{E}[Y \mid U=0, T, x]\}[\mathrm{P}(U=1 \mid T=1, x)-\mathrm{P}(U=1 \mid T=0, x)] \mathrm{P}(\boldsymbol{x})$

If simplification 1: within \boldsymbol{X} stratum, no $U T$ interaction
bias $=$
$\sum_{x}\{\mathrm{E}[Y \mid U=1, T, x]-\mathrm{E}[Y \mid U=0, T, x]\} \mathrm{P}(U=1 \mid T=1, x)-\mathrm{P}(U=1 \mid T=0, x) \mathrm{P}(x)$
plus simplification 2: the $U Y$ relationship given T does not vary across X strata bias $=$

$$
\{\mathrm{E}[Y \mid U=1, T, \boldsymbol{X}]-\mathrm{E}[Y \mid U=0, T, \boldsymbol{X}]\} \sum_{\boldsymbol{x}}[\mathrm{P}(U=1 \mid T=1, \boldsymbol{x})-\mathrm{P}(U=1 \mid T=0, \boldsymbol{x})] \mathrm{P}(\boldsymbol{x})
$$

If simplification 1: within X stratum, no $U T$ interaction
bias $=$

plus simplification 2: the $U Y$ relationship given T does not vary across X strata

bias $=$

or plus simplification 3: the $U T$ relationship does not vary across X strata
bias $=$

$$
[\mathrm{P}(U=1 \mid T=1, \boldsymbol{X})-\mathrm{P}(U=1 \mid T=0, X)] \sum_{x}\{\mathrm{E}[Y \mid U=1, T, x]-\mathrm{E}[Y \mid U=0, T, x]\} \mathrm{P}(x)
$$

If simplification 1: within X stratum, no $U T$ interaction
bias $=$
$\sum_{x}\{\mathrm{E}[Y \mid U=1, T, x]-\mathrm{E}[Y \mid U=0, T, x]\} \mathrm{P}(U=1 \mid T=1, x)-\mathrm{P}(U=1 \mid T=0, x) \mathrm{P}(x)$
plus simplification 2: the $U Y$ relationship given T does not vary across X strata
bias $=$

or plus simplification 3: the $U T$ relationship does not vary across X strata bias $=$

$$
\sum_{x}\{\mathrm{E}[Y \mid U=1, T, x]-\mathrm{E}[Y \mid U=0, T, x]\} \mathrm{P}(x)
$$

or plus both simplifications 2 and 3
bias $=\{\mathrm{E}[Y \mid U=1, T, \boldsymbol{X}]-\mathrm{E}[Y \mid U=0, T, X]\}[\mathrm{P}(U=1 \mid T=1, \boldsymbol{X})-\mathrm{P}(U=1 \mid T=0, \boldsymbol{X})]$

How does this translate to sensitivity parameters?
How does it relate to prior methods?
Consider the simplest formula, with all three simplifications,

$$
\text { bias }=\{\mathrm{E}[Y \mid U=1, T, \boldsymbol{X}]-\mathrm{E}[Y \mid U=0, T, X]\}[\mathrm{P}(U=1 \mid T=1, X)-\mathrm{P}(U=1 \mid T=0, X)]
$$

How does this translate to sensitivity parameters?
How does it relate to prior methods?
Consider the simplest formula, with all three simplifications,

$$
\text { bias }=\{\mathrm{E}[Y \mid U=1, T, X]-\mathrm{E}[Y \mid U=0, T, X]\}[\mathrm{P}(U=1 \mid T=1, X)-\mathrm{P}(U=1 \mid T=0, X)]
$$

In the \boldsymbol{X} stratum specific case (or no \boldsymbol{X} case), alternatives to specifying $\mathrm{PD}_{U T \mid x}$:

- To combine a relative measure of association

$$
\mathrm{PR}_{U T \mid x} \text { or } \mathrm{RR}_{T U \mid x} \text { or } \mathrm{OR}_{T U \mid x}
$$

and a prevalence

$$
\mathrm{P}(U=1 \mid T=0, x) \text { or } \mathrm{P}(U=1 \mid x)
$$

- To specify two prevalences

$$
\mathrm{P}(U=1 \mid T=0, \boldsymbol{x}) \text { or } \mathrm{P}(U=1 \mid T=1, \boldsymbol{x})
$$

With fewer simplications, more parameters!

Website for sensitivity analyses in similar spirit

https://jiangtammy.shinyapps.io/quantitative_bias_analysis/

Lash TL, Fox MP, Fink AK. Applying Quantitative Bias Analysis to Epidemiologic Data.
New York, NY: Springer New York; 2009. doi:10.1007/978-0-387-87959-8

Methods covered

- Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
- Rosenbaum's approach
- Sensitivity analysis for subclasses (Rosenbaum \& Rubin 1983)
- Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, Rosenbaum 1998)
- 2×2 tables and a binary U (Greenland 1996; Harding 2003)
- VanderWeele \& Arah's (2011) bias formulas for general Y,T,U
- Sensitivity analysis w/out assumptions/E-value (Ding \& VanderWeele 2016, VanderWeele \& Ding 2017)
- Regression-based methods
- Simple linear system \& omitted variable bias (Harding 2009)
- Complex non-linear systems (Lin, Psaty \& Kronmal 1998)

A regression-based approach: sensitivity analysis based on omitted variable bias (Harding 2009)

- T is binary (smoking) - my example, not Harding's.
- Y is binary or continuous (obesity/weight).
- U is continuous (depressive symptom severity), variance fixed at 1, independent of \boldsymbol{X} (think \boldsymbol{X} have been "regressed out" of U).
- Rely on linear models

$$
\begin{gathered}
\mathrm{E}[Y]=\alpha_{Y}+\beta_{Y X} X+\beta_{Y T} T+\beta_{Y U} U \\
\mathrm{E}[T]=\alpha_{T}+\beta_{T X} X+\beta_{T U} U
\end{gathered}
$$

- Need to standardize T, get bias $\beta_{T U} \beta_{Y U}$

$$
t \beta_{Y T}=o \beta_{Y T}-\beta_{T U} \beta_{Y U}
$$

Comments:

- Would like to not standardize T

Simple fix: Shift the representation of the $U T$ relationship from $\beta_{T U}$ (RD of treatment associated with one SD difference in U) to $\beta_{U T}$ (the difference in mean U comparing $T=1$ and $T=0$). Then

$$
t \beta_{Y T}=o \beta_{Y T}-\beta_{U T} \beta_{Y U}
$$

Note that this difference in means is not a causal effect (causation is assumed to be the opposite direction).

- Need to be explicit about the assumptions of the linear system

More regression based: Lin, Psaty \& Kronmal (1998)

Very interesting paper!

- T binary
- Y binary (log-linear or logistic) or survival time
- U binary or normal
- allowing TU interaction

Complicated equations are simplified based on the assumption that U and \boldsymbol{X} are independent conditional on T, which is violated because T is a collider (Hernan \& Robins 1999).

If no \boldsymbol{X}, reduce to simpler results.
VanderWeele \& Arah note that this paper offers an alternative assumption that the conditional mean of U is additive in \boldsymbol{X} and T which is helpful for deriving the bias.

Lin, D. Y., Psaty, B. M., \& Kronmal, R. A. (1998). Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics, 54(3), 948-963. doi:10.2307/2533848
Hernan, M. A., \& Robins, J. M. (1999). Letter to the Editor: Assessing the sentivity of regression results to unmeasured confounders in observational studies. Biometrics, 55, 1316-1317.

Methods covered

- Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
- Rosenbaum's approach
- Sensitivity analysis for subclasses (Rosenbaum \& Rubin 1983)
- Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, Rosenbaum 1998)
- 2×2 tables and a binary U (Greenland 1996; Harding 2003)
- VanderWeele \& Arah's (2011) bias formulas for general Y,T,U
- Regression-based methods
- Simple linear system \& omitted variable bias (Harding 2009)
- Complex non-linear systems (Lin, Psaty \& Kronmal 1998)
- Sensitivity analysis w/out assumptions/E-value (Ding \& VanderWeele 2016, VanderWeele \& Ding 2017)

Ding and VanderWeele (2016)

$$
\frac{o R R_{Y T \mid X}}{t R R_{Y T \mid X}} \geq \frac{\max \left(P R_{U T \mid X}\right) \max \left(R R_{Y U \mid X}\right)}{\max \left(P R_{U T \mid X}\right)+\max \left(R R_{Y U \mid X}\right)-1}=\frac{\beta_{U T} \beta_{Y U}}{\beta_{U T}+\beta_{Y U}-1}
$$

FIGURE. The areas above the two lines are the joint values of the exposure-confounder association $\mathrm{RR}_{E U}$ and the confounder-outcome association $\mathrm{RR}_{U D}$ that can would be required to explain away the effect estimate 10.73 and the lower confidence limit 8.02.

E-value for sensitivity analysis (VanderWeele and Ding 2017)

- T is binary (maternal breastfeeding)

- Y is binary (infant respiratory death)
- U is binary (maternal smoking status)
- Based on the bias factor

$$
B=\frac{\beta_{U T} \beta_{Y U}}{\beta_{U T}+\beta_{Y U}-1}
$$

- E-value: the joint minimum strength of association on the risk ratio scale that an unmeasured confounder would need to have with the treatment and outcome (controlling for X) to explain away the observed risk ratio of $\beta_{Y T}$

$$
\text { Evalue }=\beta_{Y T}+\sqrt{\beta_{Y T} *\left(\beta_{Y T}-1\right)}
$$

Interpretation:

- "The observed risk ratio of $\beta_{Y T}$ could be explained away by an unmeasured confounder that was associated with both the treatment and the outcome by a risk ratio of [insert E-value]-fold each, above and beyond the measured confounders, but weaker confounding could not do so."
- The higher the E-value, the stronger the unmeasured confounding associations must be to produce bias equal to the observed treatmentoutcome association.

Notes:

- For RR <1, must take inverse of RR first, then apply the formula
- Good to also report E-value of confidence limit closest to the the null
- Paper summarizes calculations for other effect measures (e.g., OR, IRR)
- E-value not to be confused with P-value!

E-value calculator: https://www.evalue-calculator.com (covers a range of scenarios

Methods covered

- Cornfield et al. (1959) smoking and lung cancer sensitivity analysis
- Rosenbaum's approach
- Sensitivity analysis for subclasses (Rosenbaum \& Rubin 1983)
- Sensitivity analysis for match pairs (Rosenbaum 1987; Gastwirth, Krieger, Rosenbaum 1998)
- 2×2 tables and a binary U (Greenland 1996; Harding 2003)
- VanderWeele \& Arah's (2011) bias formulas for general Y,T,U
- Regression-based methods
- Simple linear system \& omitted variable bias (Harding 2009)
- Complex non-linear systems (Lin, Psaty \& Kronmal 1998)
- Sensitivity analysis w/out assumptions/E-value (Ding \& VanderWeele 2016, VanderWeele \& Ding 2017)

Other aproaches

- Simulation
- Arah, O., Chiba, Y., \& Greenland, S. (2008). Bias formulas for external adjustment and sensitivity analysis of unmeasured confounders. Annals of Epidemiology, 18(8), 63746. doi:10.1016/j.annepidem.2008.04.003
- Steenland, K., \& Greenland, S. (2004). Monte Carlo Sensitivity Analysis and Bayesian Analysis of Smoking as an Unmeasured Confounder in a Study of Silica and Lung Cancer. American Journal of Epidemiology, 160(4), 384-392. doi:10.1093/aje/kwh211
- Bayesian methods
- Steenland \& Greenland (2004)
- McCandless, L. C., Gustafson, P., \& Levy, A. (2007). Bayesian sensitivity analysis for unmeasured confounding in observational studies. Statistics in Medicine, 26, 23312347. doi:10.1002/sim
- Using external data to adjust results
- Stürmer, T., Schneeweiss, S., Avorn, J., \& Glynn, R. J. (2005). Adjusting effect estimates for unmeasured confounding with validation data using propensity score calibration. American Journal of Epidemiology, 162(3), 279-89. doi:10.1093/aje/kwi192
- Design sensitivity
- Zubizarreta, J. R., Cerdá, M., \& Rosenbaum, P. R. (2013). Effect of the 2010 Chilean earthquake on posttraumatic stress: reducing sensitivity to unmeasured bias through study design. Epidemiology, 24(1), 79-87. doi:10.1097/EDE.0b013e318277367e

