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HUGE and complicated topic!

» Lots of methods development

» Applications lag behind

At Stuart lab, mediation project (R01 MH115487) focuses on translating,
adapting and disseminating causal mediation methods for applied researchers
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OVERVIEW

1. A snapshot of current practice
> review paper (Epidemiologic Reviews, 2021, doi:10.1093/epirev/mxab007)

2. A touch on estimands
> estimands paper (Psych Methods, 2021, doi:10.1037/met0000299)

3. A tiny glimpse of identification
> identification paper (under review, arXiv:2011.09537)

4. A glimpse of estimation methods
> estimation paper (under review, arXiv:2102.06048)

Simple setting:

3/57



1. A snapshot



A review of about 200 papers published in psychiatry and psychology
journals in 2013-2018

(results similar to another review of analyses using randomized trials)
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Temporal ordering

Mediation analysis is about causal effects
but only 1/4 of the papers had appropriate A-M-Y temporal ordering
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Figure 2. Proportion of studies with temporal ordering, stratified by
whether exposure (A) was randomized. Horizontal bar size reflects
the relative number of randomized and nonrandomized studies.
M, mediator; Y, outcome.
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Control for confounding

Control for confounding in mediation analysis is complicated
and this is generally not done well

adjusted for any covariates

adjusted for covariates including baseline measure of M

adjusted for covariates including baseline measure of Y

adjusted for covariates including baseline measures of both M and Y

Assumptions implicit in the analysis are often not discussed

60.7%
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16.0%
11.7%
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Mediation analysis is hard

but this is under-appreciated

it's perhaps too easy to do mediation analysis
with software that “does it for you"
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2. Estimands
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A bit of historical view

» Original desire: understand mechanisms of effect of Aon Y

» effect through a causal pathway via an intermediate variable M

> total effect = direct + indirect components

» With this desire

P> Effect were traditionally model-centric, eg indirect effect = ab, where a, b
are two regression coefs

» Causal inference revised these effects using potential outcomes, freeing
them from the models — natural (in)direct effects

» Causal inference brings in the idea of sequential intervention

» Another genre of effects — interventional effects

> Fit a different desire: effects of hypothetical conditions — in intervention
research, disparity research
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Our proposal: carefully choose the target effect (estimand)
based on what we want to learn

the estimand should drive the analysis

clarity on the estimand leads to clarity in interpreting analysis results

3 steps of analysis:
P define: define the target estimand — what we want to learn
> identify: assess its identifiability — given study design, assumptions

» estimate: estimate or test it — using statistical methods
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Research questions — effect definitions

Many effects and effect types
Which one best matches my research question?

May require clarifying vague research questions
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Quick connection

If the research question is about explaining the causal effect of exposure on
outcome, the relevant estimands are natural (in)direct effects

If the research question is about what-if conditions (eg modifying the

intervention, manipulating the mediator distribution, etc.), want to consider the
class of interventional effects
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Notation and consistency

Observed variables: A

Potential variables:

Consistency assumptions:
(connecting potential and
observed variables)

M,
Ya
Yam
YaMa/

ifA=a

binary exposure (0/1)
mediator
outcome

a=20,1

m is a mediator value

M= M,
Y = Ya: YaM: YaMa

ifA:a,M:m Y:Ya:YaM:Yam

if Mal =m

YaMa/ = Yom
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Natural (in)direct effects
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Research question

If the research question is about explaining the causal effect of exposure on
outcome, eg

» what are the mechanisms of this effect?

» what part of this effect is due to the exposure's influence on this
intermediate variable and what part is not?

P is the effect partly due to the exposure’s influence on this intermediate
variable?

then want natural (in)direct effects
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Defined at the individual level

Natural (in)direct effects decompose individual total effect

TE=Y1—Y,

= Yim, — Yomy
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Defined at the individual level

Natural (in)direct effects decompose individual total effect

TE=Yi—-Y)

= Yim, — Yomy

2 decompositions

» direct-indirect: TE = Yim, — Yimy + Yimg — Youm,
NIE; NDE,

» indirect-direct: TE = Yl/\/ll — Yo/\/y1 + YOMl — YOMO

NDE; NIEo

NIE = an effect on the outcome of the exposure’s effect on the mediator

NDE = an effect of the exposure when holding the mediator at a natural value
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Target: average natural (in)direct effects

» direct-indirect: TE = E[Yl] — E[Yu\//o] + E[Y1M0] — E[Yo]
NIE; NDE,

» indirect-direct: TE = E[Y1] — E[Yo/\//l] + E[Yo/\/yl] — E[Yo]
NDE; NIEy

These definitions are model free
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The class of interventional effects
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Research questions

If the research question is a what-if question, eg

» in intervention development research: what if the program is modified

> removing elements that affect the mediator
> retaining only elements that affect the mediator

» some other way

» in disparities research: what if could shift the distribution of a factor that

contributes to disparity

then want to consider the class of interventional effects
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Interventional effects

Large class, incl. total effect, controlled and generalized direct effects, interventional
(in)direct effects, and many other effects, but NOT natural (in)direct effects

An effect in this class contrasts
> a (hypothetical) active intervention condition

> a comparison (intervention or no intervention) condition

An (hypothetical) intervention condition

> sets exposure and/or mediator
to a specific value or a distribution
that is known or is identified (based on data in current study)

» does not change anything else

22/57



Selecting an interventional effect

2 key questions:
» Which condition best matches the what-if condition of scientific interest?

» What is the most appropriate comparison condition?

Note that an interventional effect
» generally does not tell us exactly about a realistic intervention
BUT

» does tell us about an ideal intervention

» our job to judge how rough or fine the approximation is
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Some examples
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Controlled and generalized direct effects

A .................. M .................. Y
traffic bike injury
safety helmet

intervention use

In the context of new law requiring helment use

assuming 100% compliance, the effect of the intervention in the new context is
a controlled direct effect:

CDE(100) = E[Y1,100] — E[Y0,100]

assuming compliance about 75% =+ 15%, and representing this distribution by
M, the intervention’s effect in the new context is a generalized direct effect:

GDE(M) = E[Y1,:m] — E[Yo,um]
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Effect of intervention if modified to remove indirect effect
elements

safer sex access to protection
intervention protection behavior

E[Y1, m(010)] — E[Y0]

The active intervention condition here sets the exposure to 1, but sets the
mediator to the distribution of My (conditional on pre-exposure covariates)

Note this is different from setting the mediator to Mo
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Effect of alternative intervention that affects treatment but
not screening for depression

intervention depression depression patient
with screening therapy outcome
providers

E[Y0,10,Mm(1]C,L=L0)] — E[Y0]
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Interventional (in)direct effects

Well-known cousins of natural effects. Also called stochastic (in)direct effects

IMHO, not as relevant as some of the effects mentioned earlier

IDE(-0) = E[Y'(1, M(0|C))] — E[Y(0, M(0|C))]
IDE(-1) = E[Y(1, M(1|C))] — E[Y(0, M(1]|C))]

IE(0-) = E[Y(0, M(1] C))] — E[Y(0, M(0|C))]
IE(1) = E[Y(1, M(1|C))] — E[Y (1, M(0]|C))]

In special case with no intermediate confounders, equal to natural (in)direct
effects
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What if could reduce the frequency of traffic stops of
Black folks down to half-way between their actual
experience and that of non-Black folks

Another example to show the flexibility of defining effects based on research

question
being seen traffic survival
as Black stops

E[Yimos/c) [A=1] —E[Y1|A=1]

M(0.5|C) is a half-half mixture of two distributions
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To sum up

Wide range of effect definitions
» natural (in)direct effects

> very broad class of interventional effects

Flexibility in selecting/defining effects to match research questions

(For references, see the estimands paper)
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3. ldentification
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Can we learn the effect from data?

Fundamental problem of causal inference: do not observe two potential
outcomes on same individual

Identify = connect the causal contrast to the observed data distribution using
assumptions

Identification gives us the license to estimate the effect

Key questions:
» what assumptions are required?

» are they plausible in this study?
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Three types of assumptions

> Consistency/SUTVA
» (Conditional) Exchangeability/ignorability /unconfoundedness
> Positivity /overlap

Varies depending on the estimand

Let’s just consider the second assumption
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Exchangeability /ignorability /unconfoundedness

» rough quick answers for several estimands

» more precise, and assumptions for flexibly defined estimands
(see the identification paper)
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Rough answers

1. no unmeasured A-Y confounders
2. no unmeasured A-M confounders
3. no unmeasured M-Y confounders
4

. no (observed or unobserved) variables influenced by A that confound M-Y,
aka no post-treatment confounders

Assumptions required:
» TE: 1

» CDE, GDE and other interventional effects where interventional mediator
distributionn M is known: 1, 3

» interventional effects where M is defined based on a potential mediator
distribution: 1, 2, 3

» natural (in)direct effects: 1, 2, 3, 4
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e.g., natural (in)direct effects

no L case: okay

with L case: natural (in)direct effects are NOT identified
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e.g., natural (in)direct effects

C is the collection of (overlapping) sets of variables

Cmy

Cam
\
— 3 v

/

Cay
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Precise system (see paper)

Relies on five types of potential outcomes

Y,
Yam
Yam where M is known

Yam where M is defined based on a potential mediator distribution

vV VY VvV VY

YaMa/

Assemble required assumptions for any flexibly defined estimand (use Table 1)

Application to different effects in an example
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4. Estimation



(If effect is identified) How do we learn it from data?

Many methods, and many method papers quite technical

We use two ingredients that are familiar
> weighting

> regression

treat the identification result/estimation task as a puzzle
» seek solutions using the two tools

» use visualization to build intuition

consider simple and more complex solutions
» simple — nonrobust

> more complex (combining tools) — more robust to model misspecification

For now, consider natural (in)direct effects only
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result/estimation task as a puzzle

WHAT WE HAVE WHAT WE WISH WE HAD WHAT WE ADD WITH THE
BUT DON'T HAVE ASSUMPTIONS

ple <«——— « dist. of Y given C like in the treated
7

N
which includes \

a treated full sam,

the full sample

dist. of Y given C like in the controls

« dist. of M given C like in the controls
« dist. of Y given (C,M) like in the treated

(for some pre-exposure covariates C)
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Tool 1: weighting

Form relevant pseudo samples!

then average outcome on pseudo samples (or combine with tool 2)

» pseudo treated sample and pseudo control sample

inverse probability weighting: = for treated units for control

1 1
A=1]C) ' P(A=0[C)

units

» pseudo cross-world sample
> use treated units so the Y | C, M dist. is like that of the treated
> weight to mimic C dist of full sample and M | C dist of control units

there are different ways to estimate these weights based on different expressions
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FIRST EXPRESSION

treated
subsample

C-weighting
(inverse prob weights)

M-weighting
(density ratio weights)

pseudo
ross-world sample

SECOND EXPRESSION

treated
subsample

CM-weighting
(odds weights)

(aiming at
control subsample)

a pseudo cross-world subsample

C-weighting
(inverse prob weights)

pseudo
cross-world sample

view of 3 expressions of the cross-world weight

THIRD EXPRESSION

treated
subsample

CM-weighting
(odds weights)

(aiming at
pseudo control
sample)

pseudo
cross-world sample
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desired balance

C balance

seudo treated sample
°
"\

pseudo control sample

full sample

(C,M) balance
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Tool 2: regression

specifically, regression-based prediction (or simulation)

can be used alone or combined with weighting

some combinations induce robustness
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With these tools, can build pairs of estimators

A simpler estimator
» solves the puzzle

» requires all modeling components to be consistent

A more complex estimator

» key: replace all subsamples used to fit models with relevant pseudo samples

(ie fit model to predictors spece where model is used for prediction)

» also: require regression model used for prediction to satisfy mean recovery

(even if predictions are wrong, they will be right on average, if weights correct)

> more robust, ie ok if one of two components (weights or regression) correct

A few of these estimators have appeared in the literature or are related to existing
estimators (see references in paper)
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Simple case: estimating E[Y/]

treated subsample full sample
% P
model Y 7 then / /{{{i/c/t/{////%
given C and average
/ i)
treated subsample pseudo treated sample full sample

7 07777
mir%?cc creatin *njodeIY ////, then predict Y /
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Estimating E[Yiwm,]

multiple solutions, with different properties

next slides visualize several pairs

and note which modeling components are required to be correct for consistency
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outcome imputation” method

pseudo control sample
RN
Il'

predict Yivo g,,x
and average
g )

S

Estimating E[Yim,]:

control subsample
Q

552
227
7575
4wwuuwuwuvvuwwuuvuwuuuuzggs

¥
AT

treated subsample

pseudo control sample

N
i\
\,,, predict Yimo
N2 and average
R
Qi
NN

XK

7)7?/

control subsample

BSSSSINA
AN
>

»

‘?«g
\

pseudo cross-world sample

S

f

creating

mimic C
dist. in full
sample

treated subsample

'3333333%552.

weight to
mimic Cin full )
sample and creating
mimic M given 204 OIO&'&"'II
Cin controls 933333‘5 'fr”o 19250292,
DI

simpler version more robust version
* control weights * control weights
* either outcome regression or
cross-world weights

* outcome regression
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Estimating E[Yiwm,]

treated subsample pseudo cross-world subsample

full sample

(9223

e 9%
A 8 ’s& 2
in controls 2

S5,

treated subsample

weight to
mimic Cin full
sample and
mimic M given
Cin controls

creating b

p
% and average

simpler version more robust version

* the weights either the weights only

or the M-part of the weights +
outcome model

¢ outcome model
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Estimating E[Y1a,]: mediator simulation method

treated subsample control subsample full sample

£55555%
£y simulate Mg,
> predict Yy
and average

model Y
given C,M

treated subsample  pseudo cross-world sample control subsample pseudo control sample full sample

weight {0 0%
mimic C in full
sample and
mimic M given
Cin controls

N
NN

simpler version more robust version
* mediator density * mediator density
* outcome regression * either outcome model or cross-

world weights

SSSIBBANS

55554 5%
Lz simulate Mg, $59%%
;gég predict Vivo 777

;"" and average 55"
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Estimating E[Y1p,]: iterated regression

method

treated subsample

control subsample

full sample
ALy
£ predict Yivo ;gg
model it given C 7% and average [200¢
£ 995520000000000200540%
treated subsample  pseudo cross-world sample
LTI PP 4042595 4%
Weight to j;g’:i%;‘"”"
mimic Cin full 2944
sample and

SRRARAAN
06092929,
A
;33 model Y given C,M

%%

mimic M given
Cin controls

full sample

\\53 predict V/,Mu ani
§g’ model it given
A

AN
3P

d
[

oy predict Yimo
g’&‘ and average
LIS OTe L0 05000055%:

simpler version

robust version
* two regression models

* either first model or cross-world weights

* either second model or control weights
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If target marginal additive effects, can modify last pair to

estimate NDEg

full sample

control subsample

treated subsample
2%
il
- 1222 - 1957
predict Yy and -
model it given C

pseudo control sample full sample

treated subsample  pseudo cross-world sample
PSR RRRRRRRARRARRARARAAN W N
) S i
redict Yovo 57

eightte | fsssss5550 igh 2 ¢ 2 555
7 model Y om . /7%, predict Yiyoand £ S p 955
sample and y 772 model Y given C,M (27 bl 7% 1M 7N 2% and 2994
oo " \?ggu III??‘\ égggnnnggf%
NLLI200280%%, L LRI |

mimic M given
Cin controls Fss e ass i ssses,
£0552442525522555545543555%%. 3 AT s R s

model (¥, — ) given C
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R-package mediationClarity

https://github.com/trangnguyen74/mediationClarity
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https://github.com/trangnguyen74/mediationClarity

OVERVIEW

1. A snapshot of current practice
> review paper (Epidemiologic Reviews, 2021, doi:10.1093/epirev/mxab007)

2. A touch on estimands
> estimands paper (Psych Methods, 2021, doi:10.1037/met0000299)

3. A tiny glimpse of identification
> identification paper (under review, arXiv:2011.09537)

4. A glimpse of estimation methods
> estimation paper (under review, arXiv:2102.06048)

Lots of great references (see citations in our papers)
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