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Motivating context: latent covariate in PS analysis
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Ideal analysis: PS analysis based on (Z, X)
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Motivating context: latent covariate in PS analysis

Problem: measurement error bias when using W as proxy for X
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Motivating context: latent covariate in PS analysis

Setting characteristics:
» X latent construct that is never directly observed

» W consists of multiple measurements
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Motivating context: latent covariate in PS analysis

Add Health application:
> A suspension from school, Y problems with the law (police arrest)
» Z various individual and family characteristics

> X; violence tendency (measured via questions about fights and weapon
use); X> academic achievement (measured via grades on several subjects)
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Goal: Find a better proxy for X to be used in PS analysis
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Once the proxy (X) obtained, analysis as usual

e.g., weighting/matching based on PS estimated with (Z, X)
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Idea

existing proxies suffer from measurement error bias
> W items
» sum/mean of W items (scale score)

» predicted value of X given W based on measurement model
(Raykov 2012), aka the conventional factor score (cFS)
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existing proxies suffer from measurement error bias
> W items
» sum/mean of W items (scale score)

» predicted value of X given W based on measurement model
(Raykov 2012), aka the conventional factor score (cFS)

think imputation
» incompatibility of imputation model and analysis model

» X should be informed by all variables in the PS model
» leave Y out for design-analysis separation
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Idea

existing proxies suffer from measurement error bias

» W items, scale score, cFS

think imputation
» incompatibility of imputation model and analysis model

» X should be informed by all variables in the PS model
> leave Y out for design-analysis separation

propose X = E[X | W, Z, A]
» with latent X, estimated based on a SEM that combines the
measurement model and the exposure assignment model

» aka the inclusive factor score (iFS)
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theoretical support for this proxy
how we estimate it
simulations 1: models correctly specified, iFS estimates X well

simulations 2: iFS does not estimate X as well
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Quick connection to related work on weighting/matching functions

our work fits in the proxy variable approach, searching for a proxy for X

it implies using H = (Z, X) or H = e(Z, X) for matching and
Q=A/e(Z,X)+ (1 - A)/[1 —e(Z,X)] for weighting
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Quick connection to related work on weighting/matching functions

our work fits in the proxy variable approach, searching for a proxy for X

it implies using H = (Z, X) or H = e(Z, X) for matching and
Q=A/e(Z,X)+(1—-A)/[1 —e(Z,X)] for weighting

the weighting/matching function approach (McCaffrey et al. 2013;
Lockwood & McCaffrey 2016) seeks functions of observed (and simulated)
data that when used for weighting/matching lead to unbiased effect
estimation

Q@ and H are approximately unbiased weighting and matching functions:

they target balance on the first moment of X while the exactly unbiased
weighting/matching functions target full distribution balance
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Assumptions — first layer

Causal inference assumptions

» SUTVA
» unconfoundedness: Al Y(a)|Z,X, a=0,1
> positivity: 0 < e(Z,X) <1

Measurement-related assumption

> strong surrogacy: W 1L A Y(a) | Z,X
> also weak surrogacy: W 1l Y(a)| Z,X,A

N

/A — Y
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Theoretical support for X = E[X | W, Z, A|

because X = E[X | W, Z, A]
X — X has mean zero conditional on W,Z,A and X

which implies it has mean-balance (equality of the means between
exposure conditions) before any data processing

and also has mean-balance after weighting by any positive bounded scalar
function of (Z, X, A), or matching on any function of (Z, X)
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exposure conditions) before any data processing

and also has mean-balance after weighting by any positive bounded scalar

function of (Z, X, A), or matching on any function of (Z, X)

since X = X + (X — X)

this means PS analysis using X as proxy for X can obtain mean-balance
on X via obtaining balance on X, thus improve covariate balance
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Theoretical support for X = E[X | W, Z, A|

because X = E[X | W, Z, A]
X — X has mean zero conditional on W,Z,A and X

which implies it has mean-balance (equality of the means between
exposure conditions) before any data processing

and also has mean-balance after weighting by any positive bounded scalar
function of (Z, X, A), or matching on any function of (Z, X)

since X = X + (X — X)

this means PS analysis using X as proxy for X can obtain mean-balance
on X via obtaining balance on X, thus improve covariate balance

balancing the distribution of Z and the mean of X allows unbiased effect
estimation if the outcome is linear in X within each exposure condition
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ldentification and estimation of X = E[X | W, Z, A]

challenge: the distribution of a latent variable is unidentified

to make progress requires additional assumptions
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ldentification and estimation of X = E[X | W, Z, A]

challenge: the distribution of a latent variable is unidentified

to make progress requires additional assumptions

» sufficient conditional independence

» W items (mostly) independent of Z and of one another given
X

» selective distributional and functional form assumptions

» X normal given Z
» W normal-linear, or generalized linear, given X

(if X not latent, might use validation data and require fewer assumptions)
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ldentification and estimation of X = E[X | W, Z, A]

challenge: the distribution of a latent variable is unidentified

to make progress requires additional assumptions

» sufficient conditional independence

» W items (mostly) independent of Z and of one another given
X

» selective distributional and functional form assumptions

» X normal given Z
» W normal-linear, or generalized linear, given X

(if X not latent, might use validation data and require fewer assumptions)

estimation by Mplus (Muthen & Muthen 2016)
» SEM combining model components for X|Z, W|X, Z and A|Z, X
> iFS computed using the EAP method (Bock & Aitkin 1981)
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Sims 1: models correctly specified, iFS estimates X well

balance on the covariates’ first five moments obtained via PS
weighting — centered at values obtained using the true X

Probit exposure assignment case
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Sims 1: models correctly specified, iFS estimates X well

bias in estimated ACE on 3 outcomes, linear and nonlinear in X —
centered at values obtained using the true X

bias in ACE on Y1 (linear in X)  bias in ACE on Y2 (nonlinear in X)  bias in ACE on Y3 (binary)
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Sims 1: models correctly specified, iFS estimates X well

RMSE and SD

Logit exposure assignment

Probit exposure assignment

Y1 (linear in X)

Y2 (nonlinear in X)

Y3 (binary)
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Sims 2: iFS does not estimate X as well: ordinal W

Balance on five moments of X Bias in three outcomes
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Sims 2: iFS does not estimate X as well: linear iFS

Balance on five moments of X Bias in three outcomes
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Sims 2: iFS does not estimate X as well: wrong link

metrics compare to using the true X with the wrong link function —
centered at values obtained when using the true X

Balance on five moments of X

Bias in three outcomes
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Sims 2: iFS does not estimate X as well: asymmetric dist’s

X |Zand W | X, Z skewed

Balance on five moments of X Bias in three outcomes
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Summary

> propose X = E[X | W, Z, A] as proxy for X in PS analysis

» theoretical result: balance on the first moment of X; unbiased effect
estimation if outcome is linear in X

» simulation results

> correct models, iFS estimates X well: balance on first five moments
of X, bias removal even with outcome nonlinear in X
» iFS does not estimate X as well: also performs well
> w/ continuous W, balance and bias comparable to using the true X
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Summary

> propose X = E[X | W, Z, A] as proxy for X in PS analysis

» theoretical result: balance on the first moment of X; unbiased effect
estimation if outcome is linear in X

» simulation results

> correct models, iFS estimates X well: balance on first five moments
of X, bias removal even with outcome nonlinear in X
» iFS does not estimate X as well: also performs well
> w/ continuous W, balance and bias comparable to using the true X

» while iFS specific to latent covariate, X = E[X | W, Z, A] relevant
to any unobserved X measured indirectly through W
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Application: sample, variables, and estimand

» Add Health is a nationally representative cohort of youth recruited in
1994-95 school year (when in grades 7-12)

> analysis sample restricted to individuals who at wave 1 had experienced
school suspension

» exposure: additional suspension in the approximately one-year period
between waves 1 and 2

> outcome: subsequent (up until wave 4 in 2008) police arrest

» estimand: ACEE, specifically for the group of exposed individuals in the
sample

> covariates: baseline (wave 1) individual and family characteristics,
including two latent variables violence tendency (ordinal alpha 0.81) and
academic achievement (ordinal alpha 0.67)

> assume full conditional independence (few items)
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Application: covariate balance

Exposed Unexposed group Unexposed group after PS weighting
group before PS weighting based on mean scores and based on iFSs
mean (%) mean (%) SMD mean (%)  SMD mean (%) SMD
Observed covariates
Age 15.9 16.1  -0.16 15.9 0.02 15.8 0.08
Race (%)
White 62.9 64.6 -0.04 64.3 -0.03 66.7  -0.08
Black/African-American 33.6 278 0.13 32.6 0.02 30.2 0.07
Native American 7.9 4.7 0.14 8.7 -0.03 8.4  -0.02
Asian 21 3.6 -0.08 1.4 0.05 11 0.08
Hispanic ethnicity (%) 8.6 10.8  -0.08 120 -0.11 115 -0.10
Parent education (%)
Less than high school 18.6 170 0.04 21.2 -0.06 228  -0.10
High school 38.6 264  0.27 35.8 0.06 35.9 0.05
Business/vocational training 15.0 11.9  0.09 13.4 0.05 13.4 0.05
Some college (not graduated) 12.1 25.6  -0.33 11.4 0.02 10.4 0.06
College graduate or higher 15.7 191 -0.09 18.2 -0.06 175 -0.05
Parent marital status (%)
Married 59.3 66.1  -0.14 56.7 0.05 56.8 0.05
Single 15.0 43 040 16.5 -0.04 157 -0.02
Widowed 3.6 43 -0.04 3.2 0.02 2.8 0.05
Divorced 15.0 206 -0.14 16.0 -0.03 16.9  -0.05
Separated 7.1 4.7 0.11 7.6 -0.02 79 -0.03
Proxies of latent covariates
Violence
Mean score (range 0-3) 0.65 0.43  0.39 0.66 -0.02 0.70  -0.09
Inclusive factor score -0.86 -1.32 055 -0.94 0.08 -0.84  -0.03
Academic achievement
Mean score (range 1-4) 1.18 1.52  -0.50 117 0.01 1.02 0.23
Inclusive factor score -0.21 0.40 -0.75 0.01 -0.28 -0.20  -0.01
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Application: changes in estimated ACEE due to
measurement error bias correction using the iFS method

WEIGHTING-ONLY ESTIMATOR WEIGHTING-PLUS ESTIMATOR

outcome weighted mean predicted
proportion outcome potential outcome
in the proportion ACEE 95% probability under ACEE  95%
exposed in the point  confidence non-exposure point  confidence
group unexposed estimate interval for the exposed  estimate interval
neither corrected 70.7 59.7 11.0 (3.1, 18.3) 59.1 11.6 (3.7, 18.5)
violence corrected 70.7 61.1 9.7 60.5 10.3
acad. achiev. corrected 70.7 62.5 8.2 61.4 9.3
both corrected 70.7 63.2 75 (-0.8,15.9) 62.2 8.6 (1.7,182)
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