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Confounding 

𝑇 𝑌 

𝑋1 

𝑋2 

𝑋3 
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Adjustment for Observed Confounding 

 Adjust for observed confounders 𝑿 via multiple regression 
(non-causal analysis) or propensity score methods (causal 
analysis)  

 Assumption: No unobserved confounders (no “hidden” bias”) 

𝑇 𝑌 

𝑿 
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Unobserved Confounding 

𝑇 𝑌 

𝑿 

𝑈 
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Sensitivity Analysis for an Unobserved Confounder 

Questions: 

 How much would a certain (range of) 𝑈 bias the 𝑇𝑌 effect? 

 flip: What would the true 𝑇𝑌 effect be? 

• corrected point estimate (and confidence interval?) 

 

 With what 𝑈 does the 𝑇𝑌 effect go away? 

• statistically non-significant 

• zero point estimate 

 related: Could there be a 𝑈 that makes the 𝑇𝑌 effect go away? 

𝑇 𝑌 

𝑿 

𝑈 
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Main message 

 Many flavors 

 Depends on specific situation (data, main analysis) 

 Depends on question asked 

 

 

Caveat: Only several methods will be covered to get you started. 
Far from exhaustive. 
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 R. A. Fisher (1958) thought that the observed relationship 
between smoking and lung cancer was due to some unobserved 
genetic factor that made people more susceptible to both. 

 

 Cornfield et al. (1959) analysis apparently changed his mind:  
that genetic factor would have to be more strongly related to 
smoking and to lung cancer than anything already observed. 

Fisher RA. Cigarettes, cancer and statistics. Centennial Rev Arts and Sciences. 2:151, Michigan State 
University, 1958. 
Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., & Wynder, E. L. (1959). Smoking 
and lung cancer: Recent evidence and a discussion of some questions. Journal of the National Cancer 
Institute, 22:173–203. 

Original example: Smoking and Lung Cancer 
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“Thus, if cigarette smokers have 9 times the risk of nonsmokers for 
developing lung cancer, and this is not because cigarette smoke is a 
causal agent, but only because cigarette smokers produce hormone X, 
then the proportion of hormone X-producers among cigarette smokers 
must be at least 9 times greater than that of nonsmokers. If the 
relative prevalence of hormone X-producers is considerably less than 
ninefold, then hormone X cannot account for the magnitude of the 
apparent effect.” (Cornfield et al., 1959) 
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“Thus, if cigarette smokers have 9 times the risk of nonsmokers for 
developing lung cancer, and this is not because cigarette smoke is a 
causal agent, but only because cigarette smokers produce hormone X, 
then the proportion of hormone X-produces among cigarette smokers 
must be at least 9 times greater than that of nonsmokers. If the 
relative prevalence of hormone X-producers is considerably less than 
ninefold, then hormone X cannot account for the magnitude of the 
apparent effect.” (Cornfield et al., 1959) 

𝑇 𝑌 
smoking lung cancer oRR𝑌𝑇 = 9 

subscript 𝑌𝑇 means 𝑇 predicting 𝑌 
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“Thus, if cigarette smokers have 9 times the risk of nonsmokers for 
developing lung cancer, and this is not because cigarette smoke is a 
causal agent, but only because cigarette smokers produce hormone X, 
then the proportion of hormone X-producers among cigarette smokers 
must be at least 9 times greater than that of nonsmokers. If the 
relative prevalence of hormone X-producers is considerably less than 
ninefold, then hormone X cannot account for the magnitude of the 
apparent effect.” (Cornfield et al., 1959) 

𝑇 𝑌 

𝑈 

smoking lung cancer 

hormone X 

oRR𝑌𝑇 = 9 
RR𝑌𝑇 = 1 

RR𝑌𝑈 > 1 
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“Thus, if cigarette smokers have 9 times the risk of nonsmokers for 
developing lung cancer, and this is not because cigarette smoke is a 
causal agent, but only because cigarette smokers produce hormone X, 
then the proportion of hormone X-producers among cigarette smokers 
must be at least 9 times greater than that of nonsmokers. If the 
relative prevalence of hormone X-producers is considerably less than 
ninefold, then hormone X cannot account for the magnitude of the 
apparent effect.” (Cornfield et al., 1959) 

𝑇 𝑌 

𝑈 

smoking lung cancer 

hormone X 

oRR𝑌𝑇 = 9 

PR𝑈𝑇 > 9 

RR𝑌𝑇 = 1 

RR𝑌𝑈 > 1 

(simple proof in appendix A) 
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Cornfield et al. answered which of the following questions? 

 

 How much would a certain (range of) 𝑈 bias the 𝑇𝑌 effect? 

 flip: What would the true 𝑇𝑌 effect be? 

• corrected point estimate (and confidence interval?) 

 

 With what 𝑈 does the 𝑇𝑌 effect go away? 

• statistically non-significant 

• zero point estimate 

 related: Could there be a 𝑈 that makes the 𝑇𝑌 effect go away? 
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Cornfield et al. answered which of the following questions? 

 

 How much would a certain (range of) 𝑈 bias the 𝑇𝑌 effect? 

 flip: What would the true 𝑇𝑌 effect be? 

• corrected point estimate (and confidence interval?) 

 

 With what 𝑈 does the 𝑇𝑌 effect go away? 

• statistically non-significant 

• zero point estimate 

 related: Could there be a 𝑈 that makes the 𝑇𝑌 effect go away? 
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Also, need methods that 

accommodate both observed confounders and unobserved 
confounding! 

 

 

Treatment is not unconfounded given observed 𝑿, but is 
unconfounded given observed 𝑿 and unobserved 𝑈. 

 

 

14 



Rosenbaum’s approach 

use propensity score methods 
to get balance on observed 
confounders 𝑿 

 

and then 
 

conduct sensitivity analysis on 
an unobserved confounder 𝑈 

𝑇 𝑌 

𝑿 

𝑈 
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Rosenbaum & Rubin (1983) with subclassification 

𝑇 𝑌 

𝑿 

𝑈 

bypass surgery vs. 
medical treatment 

symptom relief 
at six months 

74 covariates 

Rosenbaum, P. R., & Rubin, D. B. (1983). Assessing sensitivity to an unobserved binary covariate in an observational study 
with binary outcome. Journal of the Royal Statistical Society, 45(2), 212–218 

binary 𝑇, 𝑌, 𝑈  

Usual analysis: propensity score subclassification to balance 𝑿 and 
estimate the average treatment effect (ATE), E 𝑌1 − E 𝑌0   
(risk difference of symptom relief at six months) 
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Rosenbaum & Rubin (1983) with subclassification 

Sensitivity analysis: 

 propensity score subclassification to balance 𝑿 

 within each subclass, sensitivity analysis on how 𝑈 affects the ATE 

 average over the subclasses 

𝑇 𝑌 

𝑿 

𝑈 

bypass surgery vs. 
medical treatment 

symptom relief 
at six months 

74 covariates 

OR𝑇𝑈 OR𝑌𝑇|𝑈=1, OR𝑌𝑇|𝑈=0 

P 𝑈 = 1  

subclass-specific SA similar in spirit to SA for 2x2 table in 
Greenland (1996), Harding (2003) & Schneewise (2006) 

binary 𝑇, 𝑌, 𝑈  
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Rosenbaum & Rubin’s method answers which of the following 
questions? 

 

 How much would a certain (range of) 𝑈 bias the 𝑇𝑌 effect? 

 flip: What would the true 𝑇𝑌 effect be? 

• corrected point estimate (and confidence interval?) 

 

 With what 𝑈 does the 𝑇𝑌 effect go away? 

• statistically non-significant 

• zero point estimate 

 related: Could there be a 𝑈 that makes the 𝑇𝑌 effect go away? 
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Rosenbaum & Rubin’s method answers which of the following 
questions? 

 

 How much would a certain (range of) 𝑈 bias the 𝑇𝑌 effect? 

 flip: What would the true 𝑇𝑌 effect be? 

• corrected point estimate (and confidence interval?) 

 

 With what 𝑈 does the 𝑇𝑌 effect go away? 

• statistically non-significant 

• zero point estimate 

 related: Could there be a 𝑈 that makes the 𝑇𝑌 effect go away? 
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Rosenbaum & colleagues with matched pair data 

Similar idea:  

 Matching to balance 𝑿 in 
each pair 

 Find values of sensitivity 
parameters concerning an 
unobserved 𝑈 where the 
true 𝑇𝑌 effect may be not 
statistically significant 

 

Rosenbaum, P. R. (1987). Sensitivity analysis for certain permutational inferences in matched observational studies. 
Biometrika, 74, 13–26. 
Gastwirth, J. L., Krieger, A. M., & Rosenbaum, P. R. (1998). Dual and simultaneous sensitivity analysis for matched pairs. 
Biometrika, 85(4), 907–920. 

𝑇 𝑌 

𝑿 

𝑈 
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Three methods for a binary 𝑌: primal, dual and simultaneous 

𝑇 𝑌 

𝑈 

Primal 

tOR 𝑌𝑇 

∞ OR𝑇𝑈 

 If no unobserved confounding, the two individuals in a matched pair would 
have equal probability of treatment assignment 

 Due to confounding by some unobserved 𝑈 that is extremely predictive of 
the outcome, their odds of treatment assignment are different, 𝑂𝑅𝑇𝑈 ≠ 1 

 Say they are different by at most a factor of Γ > 1 
1

Γ
≤ OR𝑇𝑈 ≤ Γ 

 Given Γ, true p-value for the 𝑌𝑇 effect is different from observed p-value. 

 What are the values of Γ where tOR 𝑌𝑇 may become statistically non-sig? 

within a matched pair: 
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Three methods for a binary 𝑌: primal, dual and simultaneous 

 If no unobserved confounding, the two individuals in a matched pair would 
have equal odds of outcome (for the same treatment) 

 Due to unobserved confounding by some 𝑈 that is extremely correlated 
with treatment assignment, their odds of outcome are different, 𝑂𝑅𝑌𝑈 ≠ 1 

 Say they are different by at most a factor of Δ > 1 
1

Δ
≤ OR𝑌𝑈 ≤ Δ 

 Given Δ, true p-value for the 𝑌𝑇 effect is different from observed p-value. 

 What are the values of Δ where tOR 𝑌𝑇 may become statistically non-sig? 

𝑇 𝑌 

𝑈 

Dual 

tOR 𝑌𝑇 

∞ OR𝑌𝑈 

within a matched pair: 
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Three methods for a binary 𝑌: primal, dual and simultaneous 

 If no unobserved confounding, the two individuals in a matched pair would 
have equal odds of treatment and equal odds of outcome (for the same 
treatment) 

 Due to unobserved confounding by some 𝑈, their odds of treatment are 
different, 𝑂𝑅𝑇𝑈 ≠ 1, and their odds of outcome are different, 𝑂𝑅𝑌𝑈 ≠ 1 

 Say these differences are bounded by factors of Γ and Δ (both > 1) 
1

Γ
≤ OR𝑇𝑈 ≤ Γ,

1

Δ
≤ OR𝑌𝑈 ≤ Δ 

 Given Γ and Δ, true p-value is different from observed p-value. 

 What are the values of Γ and Δ where tOR 𝑌𝑇 may be statistically non-sig? 

𝑇 𝑌 

𝑈 

Dual 

tOR 𝑌𝑇 

OR𝑌𝑈 

within a matched pair: 

OR𝑇𝑈 
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Three methods for a binary 𝑌: primal, dual and simultaneous 

𝑇 𝑌 

𝑈 

𝑇 𝑌 

𝑈 

𝑇 𝑌 

𝑈 

Primal 

Dual 

Simultaneous 
tOR 𝑌𝑇 

∞ 

∞ 

OR𝑇𝑈 

OR𝑌𝑈 

tOR 𝑌𝑇 

tOR 𝑌𝑇 

Γ > 1, Δ > 1  

OR𝑇𝑈 OR𝑌𝑈 

1

Γ
≤ OR𝑇𝑈 ≤ Γ 

1

Δ
≤ OR𝑌𝑈 ≤ Δ 

What are the values of Γ and/or Δ where tOR 𝑌𝑇 is statistically non-sig? 
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𝑇 = 0 

𝑌 = 1 𝑌 = 0 

𝑇 = 1 
𝑌 = 1 𝑎 𝑏 

𝑌 = 0 𝑐 𝑑 

using a modified McNemar’s 
exact test for paired data 

𝑏 > 𝑐 

Liu, W., Kuramoto, S. J., & Stuart, E. A. (2013). An introduction to sensitivity analysis for unobserved confounding in 
nonexperimental prevention research. Prevention Science, 14(6), 570–80. doi:10.1007/s11121-012-0339-5 
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𝑇 = 0 

𝑌 = 1 𝑌 = 0 

𝑇 = 1 
𝑌 = 1 𝑎 𝑏 

𝑌 = 0 𝑐 𝑑 

use a modified McNemar’s 
exact binomial test for 
paired data 𝑏 > 𝑐 

Liu, Kuramoto & Stuart (2013) example: 

Liu, W., Kuramoto, S. J., & Stuart, E. A. (2013). An introduction to sensitivity analysis for unobserved confounding in 
nonexperimental prevention research. Prevention Science, 14(6), 570–80. doi:10.1007/s11121-012-0339-5 

Mother death by accident 

Child suicide 
hopspitalization 

Child no suicide 
hospitalization 

Mother death 
by suicide 

Child suicide 
hospitalization 

7 226 233 

Child no suicide 
hospitalization 

121 5246 5367 

128 5472 5600 
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Original test:  

 H0: for discordant pair, equal probability (0.5) of each type 

 one-sided p-value = probability of observing 𝑏 or more pairs of type [10] 
among 𝑚 = 𝑏 + 𝑐 discordant pairs 

𝑝 = 
𝑚
𝑖
0.5 𝑖 0.5 𝑚−𝑖

𝑚

𝑖=𝑏

 

𝑇 = 0 

𝑌 = 1 𝑌 = 0 

𝑇 = 1 
𝑌 = 1 𝑎 𝑏 

𝑌 = 0 𝑐 𝑑 

use a modified McNemar’s 
exact binomial test for 
paired data 𝑏 > 𝑐 

[10] 

[01] 
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m=10, b=9, pi=0.5 

p-value = 0.011 

Excel function  BINOM.DIST(b,m,pi,0) (each column); or Stata function bitest, R function binom.test 
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Original test: 

 H0: for discordant pairs, equal probability (0.5) of each type 

 one-sided p-value = probability of observing 𝑏 or more pairs of type [10] 
among 𝑚 = 𝑏 + 𝑐 discordant pairs 

𝑝 = 
𝑚
𝑖
0.5 𝑖 0.5 𝑚−𝑖

𝑚

𝑖=𝑏

 

Modified test: 

 H0: for discordant pairs, probability 𝜋 of type [10], 1 − 𝜋  of type [01] 

primal: 
1

1+Γ
≤ 𝜋 ≤

Γ

1+Γ
; dual: 

1

1+Δ
≤ 𝜋 ≤

Δ

1+Δ
; simultaneous: 0.5 ≤ 𝜋 ≤

Γ

1+Γ
∙
Δ

1+Δ
+
1

1+Γ
∙
1

1+Δ
 

 plugging in the bounds of 𝜋 gives bounds of p-value: 

𝑝 = 
𝑚
𝑖
𝜋𝑖 1 − 𝜋 𝑚−𝑖

𝑚

𝑖=𝑏

 

 which are the values of Γ and/or Δ where p-value upper-bound ≥ 0.05 

𝑇 = 0 

𝑌 = 1 𝑌 = 0 

𝑇 = 1 
𝑌 = 1 𝑎 𝑏 

𝑌 = 0 𝑐 𝑑 
𝑏 > 𝑐 

use a modified McNemar’s 
exact binomial test for 
paired data 

[10] 

[01] 
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m=10, b=9, upper-bound pi=0.625 (Γ=Δ=3) 

upper-bound  
p-value = 0.063 

Excel function  BINOM.DIST(b,m,pi,0) (each column); or Stata function bitest, R function binom.test 
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Application to Liu et al. (2013) 
 

Upper-bound of one-sided p-value associated with Γ and Δ 
using Rosenbaum’s simultaneous sensitivity analysis 

Δ 

1.0 2.0 3.0 4.0 5.0 infinity 

Γ 

1.0 <.001 <.001 <.001 <.001 <.001 <.001 

2.0 <.001 <.001 .006 .03 .07 .75 

3.0 <.001 .006 .17 .50 .75 1 

4.0 <.001 .03 .50 .89 .98 1 

5.0 <.001 .07 .75 .98 .99 1 

infinity <.001 .75 1 1 1 1 
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Application to Liu et al. (2013) 
 

Upper-bound of one-sided p-value associated with Γ and Δ 
using Rosenbaum’s simultaneous sensitivity analysis 

Δ 

1.0 2.0 3.0 4.0 5.0 infinity 

Γ 

1.0 <.001 <.001 <.001 <.001 <.001 <.001 

2.0 <.001 <.001 .006 .03 .07 .75 

3.0 <.001 .006 .17 .50 .75 1 

4.0 <.001 .03 .50 .89 .98 1 

5.0 <.001 .07 .75 .98 .99 1 

infinity <.001 .75 1 1 1 1 

.05 
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Application to Liu et al. (2013) 
 

Upper-bound of one-sided p-value associated with Γ and Δ 
using Rosenbaum’s simultaneous sensitivity analysis 

Δ 

1.0 2.0 3.0 4.0 5.0 infinity 

Γ 

1.0 <.001 <.001 <.001 <.001 <.001 <.001 

2.0 <.001 <.001 .006 .03 .07 .75 

3.0 <.001 .006 .17 .50 .75 1 

4.0 <.001 .03 .50 .89 .98 1 

5.0 <.001 .07 .75 .98 .99 1 

infinity <.001 .75 1 1 1 1 

.05 

.05 

.05 

.05 

.05 
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Rosenbaum’s primal, dual and simultanenous methods answer which 
of the following questions? 

 

 How much would a certain (range of) 𝑈 bias the 𝑇𝑌 effect? 

 flip: What would the true 𝑇𝑌 effect be? 

• corrected point estimate (and confidence interval?) 

 

 With what 𝑈 does the 𝑇𝑌 effect go away? 

• statistically non-significant 

• zero point estimate 

 related: Could there be a 𝑈 that makes the 𝑇𝑌 effect go away? 
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Rosenbaum’s primal, dual and simultanenous methods answer which 
of the following questions? 

 

 How much would a certain (range of) 𝑈 bias the 𝑇𝑌 effect? 

 flip: What would the true 𝑇𝑌 effect be? 

• corrected point estimate (and confidence interval?) 

 

 With what 𝑈 does the 𝑇𝑌 effect go away? 

• statistically non-significant 

• zero point estimate 

 related: Could there be a 𝑈 that makes the 𝑇𝑌 effect go away? 

 

If due to unobserved confounding, between the treated and control units in 
matched pairs, the odds of treatment differ by a factor of up to 2.8 and the odds of 
outcome (net of treatment) also differ by a factor of up to 2.8, then the true 
treatment effect may be statistically non-sig. 
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Other comments: 

 Briliant idea! 

 Only two sensitivity parameters 

 Directly relevant when main analysis is matched analysis 

In practice, matching might be done only to obtain balance, with 
analysis then ignoring that data are matched. Often regression 
analysis is used to adjust for any remaining imbalance in (observed) 
confounders – double robustness. 

 Need to know the two numbers of discordant pairs 

 Conservative because considers things at the edge: 

• When effect becomes non-sig, not when effect becomes zero 

• Upper-bound of p-value, not simply p-value 

• McNemar’s exact test tends to be conservative for small 𝑚 

 Can also be interpreted as sensitivity analysis for a binary 𝑈 

 The question of one-sided or two-sided test 
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Other methods in this genre: 

 Matched data, continuous outcome: use a modified Wilcoxon 
signed rank test (Rosenbaum 1987) 

 Sensitivity analysis in the context of matching with multiple 
controls (Gastwirth, Krieger & Rosenbaum 2000) 

 Sensitivity analysis in the context of propensity score 
weighting (McCaffrey et al. 2004; Ridgeway 2006) 

Gastwirth, J. L., Krieger, a M., & Rosenbaum, P. R. (2000). Asymptotic Separability in Sensitivity Analysis. Journal of the Royal 
Statistical Society, 62, 545–555. 
McCaffrey, D. F., Ridgeway, G., & Morral, A. (2004). Propensity score estimation with boosted regression for evaluating 
causal effects in observational studies. Psychological Methods, 9(4), 403–425. Retrieved from 
http://psycnet.apa.org/journals/met/9/4/403/ 
Ridgeway, G. (2006). Assessing the effect of race bias in post-traffic stop outcomes using propensity scores. Journal of 
Quantitative Criminology, 22(1), 1029. Retrieved from http://www.jstor.org/stable/23367478 
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Greenland’s (1996) and Harding’s (2003) methods 

 Data as 2x2 table, either case-control or cohort 

 

 

 

 
 

 

 

𝑌 = 1 (child suicide 
hospitalization) 

𝑌 = 0 (child no suicide 
hospitalization) 

𝑇 = 1 (mother suicide) 𝐴 𝐵 

𝑇 = 0 (mother accident) 𝐶 𝐷 

Greenland, S. (1996). Basic methods for sensitivity analysis of biases. International Journal of Epidemiology, 25(6), 1107–
1116. doi:10.1093/ije/25.6.1107 
Harding, D. J. (2003). Counterfactual Models of Neighborhood Effects: The Effect of Neighborhood Poverty on Dropping Out 
and Teenage Pregnancy. American Journal of Sociology, 109(3), 676–719. doi:10.1086/379217 
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Greenland’s (1996) and Harding’s (2003) methods 

 Data as 2x2 table, either case-control or cohort 

 

 

 

 
 

 For specified plausible binary unobserved 𝑈, unpack into two tables 

 

 

 

 
 

𝑎1 + 𝑎2 = 𝐴;  𝑏1 + 𝑏2 = 𝐵;  𝑐1 + 𝑐2 = 𝐶;  𝑑1 + 𝑑2 = 𝐷 
 

 and conduct analysis using the two tables or a constructed dataset 
with 𝑇, 𝑌, 𝑈 to obtain 𝑂𝑅𝑌𝑇|𝑈 

 

𝑌 = 1 (child suicide 
hospitalization) 

𝑌 = 0 (child no suicide 
hospitalization) 

𝑇 = 1 (mother suicide) 𝐴 𝐵 

𝑇 = 0 (mother accident) 𝐶 𝐷 

𝑈 = 1 

𝑌 = 1 𝑌 = 0 

𝑇 = 1 𝑎1 𝑏1 

𝑇 = 0 𝑐1 𝑑1 

𝑈 = 0 

𝑌 = 1 𝑌 = 0 

𝑇 = 1 𝑎0 𝑏0 

𝑇 = 0 𝑐0 𝑑0 
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Greenland    Harding 

How to specify a plausible range of 𝑈? 

3 sensitivity parameters (4 if allow 𝑇𝑈 interaction): 

 

 

 

 

 

 

 

 

 

 

For details on table cells calculation, see Liu et al., which does an 
excellent job of explaining it for the case without 𝑇𝑈 interaction. 

𝑇 𝑌 

𝑈 

OR𝑌𝑈 

𝑇 𝑌 

𝑈 

P 𝑈 𝑇 = 0  
P 𝑈 𝑇 = 1  OR𝑌𝑈 OR𝑇𝑈 

P 𝑈 = 1  
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Greenland’s and Harding’s methods can answer which of the 
following questions? 

 

 How much would a certain (range of) 𝑈 bias the 𝑇𝑌 effect? 

 flip: What would the true 𝑇𝑌 effect be? 

• corrected point estimate (and confidence interval?) 

 

 With what 𝑈 does the 𝑇𝑌 effect go away? 

• statistically non-significant 

• zero point estimate 

 related: Could there be a 𝑈 that makes the 𝑇𝑌 effect go away? 
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Greenland’s and Harding’s methods can answer which of the 
following questions? 

 

 How much would a certain (range of) 𝑈 bias the 𝑇𝑌 effect? 

 flip: What would the true 𝑇𝑌 effect be? 

• corrected point estimate (and confidence interval?) 

 

 With what 𝑈 does the 𝑇𝑌 effect go away? 

• statistically non-significant 

• zero point estimate 

 related: Could there be a 𝑈 that makes the 𝑇𝑌 effect go away? 

42 



 Easy to understand 

 Relatively easy to implement 

 Corrected point estimate and confidence interval!  

 

 How to deal with observed confounders 𝑿?  

Balance 𝑿 using propensity score methods and then conduct 
sensitivity analysis for 𝑿- balanced samples (or subsamples) 

• Suclassification and then sensitivity analysis within subclasses 
(Rosenbaum & Rubin 1983) 

• Matching (or weighting) and then use the matched/weighted sample as 
an 𝑿-balanced sample (ignoring matched) for sensitivity analysis 
(Harding 2003; Liu et al. 2013) 
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Schneeweiss (2006) 

 class critique 
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A regression-based approach: sensitivity analysis 
based on omitted variable bias (Harding 2009) 

 𝑇 is binary (smoking) – my example, not 

Harding’s. 

 𝑌 is binary or continuous (obesity/weight). 

 𝑈 is continuous (depressive symptom 

severity), variance fixed at 1, independent of 
𝑿 (think 𝑿 have been “regressed out” of 𝑈). 
 

 Rely on linear models 
 

E 𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋𝑋 + 𝛽𝑌𝑇𝑇 + 𝛽𝑌𝑈𝑈 
E 𝑇 = 𝛼𝑇 + 𝛽𝑇𝑋𝑋 + 𝛽𝑇𝑈𝑈 

 

 Need to standardize 𝑇, get bias 𝛽𝑇𝑈𝛽𝑌𝑈 
 

𝑡𝛽𝑌𝑇 = 𝑜𝛽𝑌𝑇 − 𝛽𝑇𝑈𝛽𝑌𝑈 

Harding, D. J. (2009). Collateral Consequences of Violence in Disadvantaged Neighborhoods. Social Forces, 88(2), 757–784. 
doi:10.1353/sof.0.0281 

𝑇 𝑌 

𝑿 

𝑈 

𝛽𝑇𝑈 𝛽𝑌𝑈 

Var 𝑈 = 1 
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Comments: 

 Would like to not standardize 𝑇 

Simple fix: Shift the representation of the 𝑈𝑇 relationship  
from 𝛽𝑇𝑈 (RD of treatment associated with one SD difference in 𝑈)  
to 𝛽𝑈𝑇 (the difference in mean 𝑈 comparing 𝑇 = 1 and 𝑇 = 0).  
Then 

𝑡𝛽𝑌𝑇 = 𝑜𝛽𝑌𝑇 − 𝛽𝑈𝑇𝛽𝑌𝑈 
 

Note that this mean difference is not a causal effect (causation is 
assumed to be the opposite direction). 

 

 Need to be explicit about the assumptions of the linear system 
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More regression based: Lin, Psaty & Kronmal (1998) 

Very interesting paper! 

 𝑇 binary 

 𝑌 binary (log-linear or logistic) or survival time 

 𝑈 binary or normal 

 allowing 𝑇𝑈 interaction 
 

Complicated equations are simplified based on the 
assumption that 𝑈 and 𝑿 are independent 
conditional on 𝑇, which is violated because 𝑇 is a 

collider (Hernan & Robins 1999). 
 

If no 𝑿, reduce to simpler results. 

𝑇 𝑌 

𝑿 

𝑈 

Lin, D. Y., Psaty, B. M., & Kronmal, R. A. (1998). Assessing the sensitivity of regression results to unmeasured confounders in 
observational studies. Biometrics, 54(3), 948–963. doi:10.2307/2533848 
Hernan, M. A., & Robins, J. M. (1999). Letter to the Editor: Assessing the sentivity of regression results to unmeasured 
confounders in observational studies. Biometrics, 55, 1316–1317. 

VanderWeele & Arah note that this paper an offers alternative assumption 
that the conditional mean of 𝑈 is additive in 𝑿 and 𝑇 which is helpful for 

deriving the bias. 
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VanderWeele & Arah’s (2011) general bias formulas 

Very general! 
 

For simplicity, let 𝑈 be binary, and consider ATE on the additive scale. 
 

 Each individual has a potential outcome under treatment 𝑌1 and a 
potential outcome under control 𝑌0. 

 Treatment assignment is unconfounded (as good as random) given 
observed 𝑿 and unobserved 𝑈. 

 Treatment effect is: ATE = E 𝑌1 − E 𝑌0  
 

ATE =  E 𝑌 𝑇 = 1, 𝒙, 𝑢 − E 𝑌|𝑇 = 0, 𝒙, 𝑢 P 𝑢 𝒙 P 𝒙
𝑢𝒙

. 

 

Vanderweele, T. J., & Arah, O. a. (2011). Bias formulas for sensitivity analysis of unmeasured confounding for general 
outcomes, treatments, and confounders. Epidemiology, 22(1), 42–52. doi:10.1097/EDE.0b013e3181f74493 
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VanderWeele & Arah’s (2011) general bias formulas 

Very general! 
 

For simplicity, let 𝑈 be binary, and consider ATE on the additive scale. 
 

 Each individual has a potential outcome under treatment 𝑌1 and a 
potential outcome under control 𝑌0. 

 Treatment assignment is unconfounded (as good as random) given 
observed 𝑿 and unobserved 𝑈. 

 Treatment effect is: ATE = E 𝑌1 − E 𝑌0  
 

ATE =  E 𝑌 𝑇 = 1, 𝒙, 𝑢 − E 𝑌|𝑇 = 0, 𝒙, 𝑢 P 𝑢 𝒙 P 𝒙
𝑢𝒙

. 

 

 Adjusting for 𝑿 but not 𝑈 gives 
 

 E 𝑌 𝑇 = 1, 𝒙 − E 𝑌|𝑇 = 0, 𝒙 P 𝒙
𝒙

. 

 

 Bias is the difference between these two quantities. 
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General formula: 
 

bias = 

 E 𝑌 𝑇 = 1, 𝑈 = 1, 𝒙 − E 𝑌|𝑇 = 1, 𝑈 = 0, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝒙 P 𝒙
𝒙

− 

 E 𝑌 𝑇 = 0, 𝑈 = 1, 𝒙 − E 𝑌|𝑇 = 0, 𝑈 = 0, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝒙 P 𝒙
𝒙
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General formula: 
 

bias = 

 E 𝑌 𝑇 = 1, 𝑈 = 1, 𝒙 − E 𝑌|𝑇 = 1, 𝑈 = 0, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝒙 P 𝒙
𝒙

− 

 E 𝑌 𝑇 = 0, 𝑈 = 1, 𝒙 − E 𝑌|𝑇 = 0, 𝑈 = 0, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝒙 P 𝒙
𝒙

 

 

 

 

 

Complicated, but simplifies in some cases. 

𝑈𝑇 within 𝑿 stratum 𝑈𝑌 given 𝑇 within 𝑿 stratum 

𝑇 𝑌 

𝑿 

𝑈 
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If simplification 1: within 𝑿 stratum, no 𝑈𝑇 interaction 
 

bias = 

 E 𝑌 𝑈 = 1, 𝑇, 𝒙 − E 𝑌|𝑈 = 0, 𝑇, 𝒙 P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝑇 = 0, 𝒙 P 𝒙
𝒙

 

 

plus simplication 2: the 𝑈𝑌 relationship given 𝑇 does not vary across 𝑿 strata 
 

bias = 

E 𝑌 𝑈 = 1, 𝑇, 𝑿 − E 𝑌|𝑈 = 0, 𝑇, 𝑿  P 𝑈 = 1 𝑇 = 1, 𝒙 − P 𝑈 = 1 𝑇 = 0, 𝒙 P 𝒙
𝒙

 

 

or plus simplication 3: the 𝑈𝑇 relationship does not vary across 𝑿 strata 
 

bias = 

P 𝑈 = 1 𝑇 = 1, 𝑿 − P 𝑈 = 1 𝑇 = 0, 𝑿  E 𝑌 𝑈 = 1, 𝑇, 𝒙 − E 𝑌|𝑈 = 0, 𝑇, 𝒙 P 𝒙
𝒙

 

 

or plus both simplications 2 and 3 
 

bias = E 𝑌 𝑈 = 1, 𝑇, 𝑿 − E 𝑌|𝑈 = 0, 𝑇, 𝑿 P 𝑈 = 1 𝑇 = 1, 𝑿 − P 𝑈 = 1 𝑇 = 0, 𝑿  
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How does this translate to sensitivity parameters? 

 

For example, with all three simplications, 

 
bias = E 𝑌 𝑈 = 1, 𝑇, 𝑿 − E 𝑌|𝑈 = 0, 𝑇, 𝑿 P 𝑈 = 1 𝑇 = 1, 𝑿 − P 𝑈 = 1 𝑇 = 0, 𝑿  

 

 

 

With fewer simplications, more parameters. 

RD𝑌𝑈|𝑇,𝑿 PD𝑈𝑇|𝑿 

𝑇 𝑌 

𝑿 

𝑈 
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Other aproaches 

 Simulation 
• Arah, O., Chiba, Y., & Greenland, S. (2008). Bias formulas for external adjustment and 

sensitivity analysis of unmeasured confounders. Annals of Epidemiology, 18(8), 637–
46. doi:10.1016/j.annepidem.2008.04.003 

• Steenland, K., & Greenland, S. (2004). Monte Carlo Sensitivity Analysis and Bayesian 
Analysis of Smoking as an Unmeasured Confounder in a Study of Silica and Lung 
Cancer. American Journal of Epidemiology, 160(4), 384–392. doi:10.1093/aje/kwh211 

 Bayesian methods 
• Steenland & Greenland (2004) 

• McCandless, L. C., Gustafson, P., & Levy, A. (2007). Bayesian sensitivity analysis for 
unmeasured confounding in observational studies. Statistics in Medicine, 26, 2331–
2347. doi:10.1002/sim 

 Using external data to adjust results 
• Stürmer, T., Schneeweiss, S., Avorn, J., & Glynn, R. J. (2005). Adjusting effect 

estimates for unmeasured confounding with validation data using propensity score 
calibration. American Journal of Epidemiology, 162(3), 279–89. 
doi:10.1093/aje/kwi192 

 Design sensitivity 
• Zubizarreta, J. R., Cerdá, M., & Rosenbaum, P. R. (2013). Effect of the 2010 Chilean 

earthquake on posttraumatic stress: reducing sensitivity to unmeasured bias through 
study design. Epidemiology, 24(1), 79–87. doi:10.1097/EDE.0b013e318277367e 
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