
Outcome missingness in principal stratification:

in defense of MAR over latent ignorability (latent MAR)

Trang Quynh Nguyen

Associate Research Professor
Johns Hopkins Department of Mental Health

SER 2024-06-19

1 / 17



Context

▶ The study of treatment effects is often complicated by noncompliance

▶ Principal stratification (Frangakis & Rubin, 2002): Define strata of people
based on potential values of treatment received

▶ Our focus: outcome missingness within this framework
▶ Revisit a standard assumption: latent ignorability (latent MAR)
▶ Conclude that MAR should be preferred
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Principal stratification on one slide – putting aside missingness

Z treatment assigned (binary)
S treatment received (binary)
Y outcome

X baseline covariates
U unobserved confounders of S ,Y

Yz potential outcomes
Sz potential treatment received
C principal stratum, C := (S1,S0)

PCEs: E[Y1 − Y0 | C = c]

X Z YS

U

DAG for a simple main model

One-sided noncompliance:

C =

{
complier if S1 = 1

noncomplier if S1 = 0

Two-sided noncompliance:

C =


complier if S1 = 1, S0 = 0

defier if S1 = 0, S0 = 1

always-taker if S1 = S0 = 1

never-taker if S1 = S0 = 0
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Identifying assumptions
▶ consistency/SUTVA

▶ ignorability (and positivity) of
treatment assigned Z

▶ monotonicity, S1 ≥ S0 (ie no defiers)

▶ approach-specific assumption
(eg ER, PI)
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A bit more on identification

Consider one-sided noncompliance.

Standard causal inference assumptions (consistency and treatment assignment
ignorability and positivity) provide

CACE = EX |complier{E[Y | X ,Z = 1, complier]− E[Y | X ,Z = 0, complier]},
NACE = EX |noncomplier{E[Y | X ,Z = 1, noncomplier]− E[Y | X ,Z = 0, noncomplier]}.
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]− E[Y | X ,Z = 0, complier]},

NACE = EX |noncomplier{E[Y | X ,Z = 1, S = 0︸ ︷︷ ︸
noncomplier

]− E[Y | X ,Z = 0, noncomplier]}.

The approach-specific assumption (ER or PI) helps disentangle the two pieces
from the mixture.
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Outcome missingness complicates all this

R: variable indicating Y is observed (R = 1) or missing (R = 0)

To recover identification requires some assumption about the missingness

but which assumption?

MAR: R ⊥⊥ Y | X ,Z , S

Latent ignorability (latent MAR): R ⊥⊥ Y | X ,Z ,C

– seen as a relaxation of MAR
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History of LI/LMAR (R ⊥⊥ Y | X ,Z ,C )

▶ First used in Baker 1998 and formalized in Frangakis and Rubin 1999

▶ Picked up by many authors, eg Peng, Little, and Raghunathan 2004;
Mealli et al. 2004; Dunn, Maracy, and Tomenson 2005; Zhou and Li 2006;
Taylor and Zhou 2009; Chen, Geng, and Zhou 2009; Jo, Ginexi, and
Ialongo 2010; Lui and Chang 2010; Mealli and Mattei 2012; Chen et al.
2015; Nguyen, Carlson, and Stuart 2024

▶ Most have used LI/LMAR within the instrumental variable approach,
combining it with an additional assumption
▶ most often an ER on response, labeling the combination of the two ERs

compound ER
▶ Mealli et al. 2004; Jo, Ginexi, and Ialongo 2010 propose alternative of stable

complier response

▶ We (Nguyen, Carlson, and Stuart 2024) generalize to allow non-IV
approaches (eg PI) and a wider range of specific missingness assumptions

▶ BUT the plausibility and necessity of LI/LMAR has not been examined
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What we find

LI/LMAR is not a relaxation of MAR. Where LI/LMAR holds, MAR also holds.

For the sake of breaking dependence between Y and R, no benefit is gained
from conditioning on C on top of observed variables.

We then turn to focus on MAR, clarifying conditions on the causal structure for
MAR to hold, and recover identification within the IV and PI approaches.
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Bringing principal stratum into the causal graph

Change representation of model for S

▶ (Z ,C) perfectly determine S

▶ The influence on S of all causes other than Z go through C

X Z YS

U

D: DAG for the simple main model

X Z

C

YS

U

G. Principal stratification graph based on D
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Introducing outcome missingness (and no assumption yet!)

X Z YS

Uys

Urys

R

Urx

Urz

Urs

Ury

DM: D + semi-saturated missingness model

X Z

C

YS

Uys

Urys

R

Urx

Urz

Urs

Ury

GM: Principal stratification graph based on DM

9 / 17



Conditional graphs

3 rules

1. follow the causal order

2. if the variable conditioned on is a collider of 2+ causes, indicate the induced
non-causal dependence between the causes (using undirected dashed edges)

3. drop the variable being conditioned on and all the arrows and edges involving it

then some decluttering
▶ drop any remaining variable that is a constant (with its arrows and edges)

▶ combine in one node any pair of adjacent variables with a one-to-one
correspondence

▶ drop any unobserved variable that has become a unique cause of a single variable
and is otherwise not connected to the rest of the graph

▶ drop any unobserved variable that is not a cause of any other variables
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Conditional graphs based on GM

conditional on X

C

Z YS

Uys

Urys

R

Urz

Urs

Ury

GMx:
Conditional graph given X = x

conditional on X ,Z

C=S

Y

Uys

Urys

Urs

Ury

R

GMx1:
Conditional graph given (X =x ,Z=1),

one-sided noncompliance setting

C

Y

Uys

Urys

Urs

Ury

R

GMx0:
Conditional graph given (X =x ,Z=0),

one-sided noncompliance setting

C

S Y

Uys

Urys

Urs

Ury

R

GMxz:
Conditional graph given (X =x ,Z=z),

two-sided noncompliance setting
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Types of paths via which R and Y are dependent

One-sided noncompliance setting: LMAR = MAR1 + LMAR0

Treatment arm

C=S

Y

Uys

Urys

Urs

Ury

R

GMx1
(same as GMx1 in Fig. ??C):

MNAR1

C=S

Y

Uys

Urs

R

GMx1-a
(no direct path, no Ury/Urys):

MNAR1

C=S

Y

Uys

R

GMx1-b
(no direct path, no Ury/Urys, no Urs):

MAR1

C=S

Y

Urs

R

GMx1-c
(no direct path, no Ury/Urys, no Uys):

MAR1

Control arm

C

Y

Uys

Urys

Urs

Ury

R

GMx0
(same as GMx0 in Fig. ??C):

MNAR0

C

Y

Uys

Urs

R

GMx0-a
(no direct path, no Ury/Urys):

MAR0, not LMAR0

C

Y

Uys

R

GMx0-b
(no direct path, no Ury/Urys, no Urs):

LMAR0, MAR0

C

Y

Urs

R

GMx0-c
(no direct path, no Ury/Urys, no Uys):

LMAR0, MAR0
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Main finding 1

LI?LMAR is not a relaxation of MAR.

For the purpose of rendering R and Y conditionally independent (or reduce
their dependence), it is not necessary to condition on C on top of X ,Z , S .

Conditioning on C may induce unwanted dependence.

C should not be conditioned on in missingness assumptions.

We should let go of LI/LMAR (and all the specific assumptions that have
accompanied LMAR), and instead embrace MAR.

If MAR is deemed unlikely, should use standard strategies to handle MNAR
instead of adopting LMAR.
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Outline

A deep dive into MAR
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Then a deep dive into MAR → Main finding 2

Conditions for MAR to hold – without auxiliary variables

▶ no direct path

▶ no triangle (unobserved common causes of Y and R)

▶ no S-butterfly

▶ no X-butterfly

Conditions for MAR to hold – with auxiliary variables W

▶ no/controlled direct path

▶ no/controlled triangle

▶ no/controlled S-butterfly

▶ no/controlled X-butterfly

▶ no W-butterfly

“controlling” is by conditioning on W

so where W variables are in the causal structure is important
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Additional results

MAR-based recovery of effect identification

▶ within the IV approach

▶ within the PI approach

No need for a specific missingness assumption
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Conclusion

We should put LI/LMAR aside and work with MAR (and standard MNAR).

More generally, should be careful with assumptions that condition on principal
stratum.
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