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Propensity score analysis & measurement error

Propensity score methods (e.g., matching, weighting) help balance covariates 
between exposed and unexposed groups in an observational study, thus 
remove confounding in estimating the causal effect of exposure on outcome.

Only covariates used in estimating the propensity score are balanced, hence 
the assumption of no unmeasured confounding:

• No unobserved confounder

• No measurement error: If a confounder is measured with error, there is still 
some imbalance in the true covariate, and that residual imbalance 
confounds the estimated treatment effect.
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Latent variable and measurement error

Some covariates are latent variables, e.g., depression, anxiety, self-esteem, 
readiness-to-learn, substance dependence, stigma, etc.

Many are measured using multi-item scales.

Data example: Does out-of-school suspension in middle/high school lead to 
more trouble with the law (arrests)? Baseline covariates include the latent 
constructs delinquency and academic achievement.

A common practice in propensity score analysis is to use a summary score 
(sum/mean) of the items. This means there is measurement error bias.

With doubly robust propensity score analysis, measurement error bias affects 
both the propensity score model and the outcome model.
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Our investigation

Strategy: use factor scores to represent the latent covariate
• investigate 3 types of factor scores generated from

– the measurement model (simple) (Raykov 2012; Jakubowski 2015)

– SEM linking the latent factor to the exposure variable (partially inclusive)

– SEM that includes the full exposure assignment model and correlations 
among covariates (fully inclusive)

• comparison methods

– using the multiple measurements directly

– using a summary score (mean/sum) of the measurements

Analysis context: doubly robust propensity score weighting analysis
• propensity score weighting to balance covariates

• regression of outcome on exposure and covariates using weighted sample
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Data generating mechanism
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Data generating mechanism

Structural model

• 𝑋 and 𝑍 multivariate normal

• Binary 𝐴 dependent on 𝑋 and 𝑍 via a probit or logit model

• 𝑌 normal, dependent on 𝑋 and 𝑍 but not 𝐴

Measurement model

• 𝑊s continuous/ordinal

• Measurement errors normal, non-differential w.r.t. 𝑋, 𝑍, 𝐴, 𝑌, and 
independent across the 𝑊s

• 𝑊s have uniform or varying correlations with 𝑋 (range .4 to .8)

2352 scenarios, each with 1000 simulated n=1000 datasets

each with number of 𝑊s running from 2 to 10
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Factor score types
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Factor score versions

Simple factor score method:

• with continuous 𝑊s: linear measurement model

• with ordinal 𝑊s: logit/probit/linear measurement models

Partially and fully inclusive factor scores with continuous and ordinal 𝑊s:

• logit/probit/linear SEMs

Implemented in Mplus using ML and WLSMV estimators
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Simple factor score, direct Ws, mean W

corr(W,X)=0.4 corr(W,X)=0.8 corr(W,X)=(.4,.6,.8,...)
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Why simple FS not better than direct Ws?

With continuous 𝑊s, the two methods capture the same information about 𝑋
based on the correlations among the 𝑊s,

correlation of simple FS with 𝑋 = multi-correlation of 𝑊s with 𝑋.

The simple factor score does not use any additional information, such as 
information about the 𝑋-𝐴 association, or information about the 
𝑋-𝑍-𝐴 joint distribution,

correlations of simple FS with 𝐴 and 𝑍 < correlations of 𝑋 with 𝐴 and 𝑍.
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Partially inclusive vs. simple factor scores

Better, but still biased, especially when 𝑋 and 𝑍 are correlated.

The sign of bias is a function of the sign of the 𝑋-𝑍 correlation.

corr(Z,X)=.4 corr(Z,X)=0 corr(Z,X)=-.4
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Why doesn’t the partially inclusive FS method work?

Model imcompatibility:
• the factor score model (imputation model) does not include 𝑍

• the propensity score model (analysis model) includes 𝑍
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Fully inclusive vs. partially inclusive & simple FSs
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Why does the fully inclusive FS method work?

Moving from the simple FS to the fully inclusive FS 

takes us only a tiny bit closer to the true 𝑋 (the correlation of the FS with 𝑋
increases very slightly),

but brings us substantially closer to 𝐴 and 𝑍 (the fully inclusive FS is more 
correlated with 𝐴 and 𝑍 than 𝑋 is).

The fully inclusive FS approximates the predicted value of 𝑋 from a regression 
model using the true 𝑋

Ƹ𝜂 𝑾, 𝐴, 𝑍 ⟶ 𝑋 𝑾,𝐴, 𝑍

and this predicted value of 𝑋 is sufficient to remove confounding.
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T prev = .5logit T model T prev = .2logit T model T prev = .5probit T model T prev = .2probit T model
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Conclusions

A simple fix for bias due to a latent/mismeasured covariate in propensity 
score weighting analysis is the fully inclusive factor score method.

Low coverage may be an issue (if large effect of latent variable on exposure 
assignment, exposure prevalence far from .5, or few measurements)

Bootstrapping improves coverage.

Note: The regression coefficient of the factor score in the outcome model is NOT an estimate of 
the effect of the latent variable on the outcome.
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Illustrative example
Question of interest: Does out-of-school suspension increase the risk of problems 
with the law in young adulthood?

Data: The National Longitudinal Study of Adolescent to Adult Health (Add Health)
• representative sample of US adolescents
• 1994-95 (w1, grades 7-12), 1996 (w2), 2001-02 (w3), 2008-09 (w4, ages 24-32)
• public use data, males only

2 sub-samples: using complete data
• A: those who had been suspended prior to wave 1: n=468
• B: those who had never been suspended by wave 1: n=961

Exposure: suspended between waves 1 and 2:  32.9% in A (-> ATE); 6.0% in B (-> ATT)

Outcome: arrested by wave 4: 60.7% in A; 30.9% in B (49.3% in exposed)

Covariates measured at wave 1:
– Manifest: age, race/ethnicity, parent education, parent marital status
– Latent: delinquency, academic achievement

Factor analysis:
– 2 delinquency factors: general (GD, 8 items) and violent (VD, 4 items)
– 1 academic achievement factor (AA, 4 items)
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Sample A (suspended before): ATE (for n=468)

Varying adjustment (ignoring measurement error)

OR (95% CI) RR RD p1 p0

GD, VD, AA unadjusted   2.01 (1.25,3.23)   1.26  .148   .725  .577

AA adjusted   1.68 (1.05,2.70)   1.18  .109   .704  .595

GD & VD adjusted   1.94 (1.21,3.11)   1.24  .138   .724  .586

GD, VD & AA adjusted   1.63 (1.02,2.60)   1.17  .100   .699  .600

Varying measurement error correction (all three adjusted)

OR (95% CI) RR RD p1 p0

none corrected   1.63 (1.02,2.60)   1.17  .100   .699  .600

AA corrected   1.42 (0.90,2.26)   1.12  .071   .682  .611

GD & VD corrected   1.53 (0.97,2.43)   1.14  .086   .693  .607

GD, VD & AA corrected   1.36 (0.87,2.14)   1.10  .062   .678  .616
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Sample B (never suspended before): ATT (for n1=58)

Varying adjustment (ignoring measurement error)

OR (95% CI) RR RD  p1 p0

D1, D2, AA unadjusted   2.55 (1.40,4.65)   1.68  .200   .493  .293

AA adjusted   2.34 (1.23,4.46)   1.56  .176   .493  .317

D1 & D2 adjusted   2.02 (1.03,3.95)   1.42  .147   .493  .346

D1, D2 & AA adjusted   1.86 (0.92,3.79)   1.34  .125   .493  .368

Varying measurement error correction (all three adjusted)

OR (95% CI) RR RD p1 p0

none corrected   1.86 (0.92,3.79)   1.34  .125   .493  .368

AA corrected   1.76 (0.88,3.54)   1.30  .115   .493  .378

D1 & D2 corrected   1.60 (0.77,3.35)   1.24  .095   .493  .399

D1, D2 & AA corrected   1.55 (0.76,3.18)   1.22  .088   .493  .405
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Application and extensions

Application: This kind of correction is useful when

• confounding by the latent covariate(s) is substantial AND measurement 
error is large

• the estimated treatment effect is borderline significant

Extensions

• Propensity score matching

• More complicated error structures: correlated, differential, non-normal

• More complicated exposure assignment models
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Thank you!

Trang Q. Nguyen (tnguye28@jhu.edu)
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Supplementary slides

25



Summary

Methodological context:  Propensity score methods are increasingly used to 
remove confounding to estimate the effect of a treatment (exposure). 
Key assumption is no unobserved confounding.

Problem:  Bias due to a mismeasured/latent covariate

Our work: With multiple measurements of such variable, investigate bias/bias 
reduction when using a factor score to represent the variable, with several 
types of factor scores

Main finding: A simple fix is using the factor score from a SEM that includes the 
measurements and the full treatment assignment model

Illustrative example: Analysis of Add Health data to examine out-of-school 
suspension as a risk factor for trouble with the law in young adulthood.
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Model links and estimators, FS estimation methods

• Linear models: posterior mode (regression-based)

• Logit and probit models fit using ML: posterior mean

• Probit models also fit using WLSMV*: posterior mode

* fully inclusive probit model using WLSMV requires a modification

We used Mplus 7.2.

But most methods can be implemented in other popular statistical packages.
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Simulation studies

Data generating model Parameter values

𝑍 and 𝑋 𝑍
𝑋

~Normal
0
0

,
1 𝜌
𝜌 1

𝜌 = 0, . 4, −.4

𝑇
either logit: 𝑇~Binomial

𝑒𝛽0+𝛽𝑧𝑍+𝛽𝑥𝑋

1+𝑒𝛽0+𝛽𝑧𝑍+𝛽𝑥𝑋

or probit:    𝑇∗~Normal 𝛽𝑧𝑍 + 𝛽𝑥𝑋, 1.7
2 , 𝑇 = 1 ∙ 𝑇∗ > 𝜏𝑇 ,

where 𝛽0 and 𝜏𝑇 are set so that P 𝑇 = 1 = 𝑝𝑇.

𝛽𝑧 = .5,1

𝛽𝑥 = .5,1

𝑝𝑇 = .5, . 4, . 3, . 2

𝑌 𝑌~Normal 𝑍 + 𝛾𝑋 + 0𝑇 , 4 . 𝛾 = 1,2
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Simulation studies

Data generating model Parameter values

continuous 

𝑾

𝑾~Normal 𝑋, 𝚺 ,

𝚺 is diagonal matrix with variance 

elements based on 𝝓 = cor 𝑾,𝑋 .

𝑝 = 2, … , 10

3 cases of uniform 𝑊-𝑋 correlations:

𝝓 =. 𝟒 (low), . 𝟔 (medium), . 𝟖 (high)

4 cases of mixed 𝑊-𝑋 correlations:

𝝓 = .4, . 6, . 4, . 6, … (lome), 

.4, . 8, . 4, . 8, … (lohi), 

.6, . 8, . 6, . 8, … (mehi), 

.4, . 6, . 8, . 4, . 6, . 8, … (lomehi)

ordinal 𝑾 𝑾∗~Normal 𝑋, 𝚺 as above

then categorized into 𝑾 with four equal 

mass categories
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Bias

The simple FS method is similarly biased as the direct Ws method.

The mean W method is more biased than the simple FS and direct Ws methods 
when 𝑊-𝑋 correlations are not uniform.

All simple FSs perform similarly, except when 𝑊s are ordinal & highly 
correlated with 𝑋 – then logit/probit FSs are slightly less biased.

The more measurements and higher 𝑊-𝑋 correlations, the less bias.

The larger the effects of 𝑋 on 𝑇 and 𝑌, the more bias.

Variance

All methods have underestimation of variance when treatment prevalence is 
far from .5. This problem gets worse for the direct Ws method with increasing 
number of measurements.
(relevant to high alpha situation when direct Ws looks appealing from a bias 
perspective)
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The fully inclusive FS method: other findings

Bias – differentiating the fully inclusive factor scores

When treatment prevalence is far from .5, the FS consistent with the true 
treatment assignment model performs slightly better. This is more pronounced 
when the effect of 𝑋 on 𝑇 increases. However, the differences are small 
compared to the magnitude of bias of the simple FS method.

When 𝑊s are ordinal and some 𝑊s are highly correlated with 𝑋, the linear FS is 
slightly more biased than the non-linear ones.

Variance and coverage

Variance is underestimated, more so when the number of 𝑊s is small, and more 
so when treatment prevalence is far from .5.

Coverage worsens when the effect of 𝑋 on 𝑇 increases.

Coverage is worse when treatment prevalence is far from .5 (also when using 𝑋).

In cases where coverage is poor, bootstrapping substantially improves coverage.

31


