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Motivation

Mediation analysis is popular

The methodological literature on causal mediation analysis
is exciting, fast growing, and highly technical

» Different types of effects

* Assumptions

* Lots of methods

Recent method reviews (e.g., Vo et al., Stuart et al.) of
applied mediation analyses (up until 2020)

* Uptake slow, most still use traditional mediation analysis

* Also lots of basic problems: temporality, confounding

Concern about “easy” mediation analysis, especially with
software that “does it for you”

* True with traditional mediation analysis

* Also seen in recent papers that use causal mediation analysis



Motivation

* Need to help ground practitioners in some basics

 We are not the only ones thinking this

e e.g., the AGReMA statement (Hopin et al.) -- guideline on reporting
of mediation analysis

e Our project (Pl Stuart) aims to bring causal mediation
analysis to mental health researchers



A series of 3 papers

 Estimands: define effects based on what we want to learn
(Psych Methods)

* |dentification: handle the range of effects via five potential
outcome types

* Estimation: build intuitive appreciation for options including
simpler and more robust methods (this talk)



Key ideas of paper

Use two ingredients that are familiar
* weighting
* regression

Treat the identification result/estimation task as a puzzle
 find solutions using the tools
* visualization helpful

Solutions may be simple or complex
* simpler — nonrobust
* more complex (combining tools) — more robust

User-friendliness

e appeal to intuition
* based on theory, but can hide theory



Scope of paper

Simple setting
A binary exposure
M mediator
Y univariate outcome
C pre-exposure covariates

Estimand: marginal natural (in)direct effects

* contrasting the means of Y;, Yy and Yy, (or You,)

Assume effects are identified

Alternative if don’t like natural effects or the cross-world assumption
* consider hypothetical intervention on exposure and mediator distribution
* in simple case with no intermediate confounder

The ideas apply to other estimands
e solve another puzzle!



ID result/estimation task as a puzzle

Under the assumptions, the relevant potential outcome
means are identified as

E[Y;] = EC{E|Y|C,A = 1]}
E;YO] = EAE|Y|C,A = 0]}
E|Yim, | = Ec(Emca=ofE[Y|C,A = 1,M]})




ID result/estimation task as a puzzle

WHAT WE HAVE

the full sample

which includes

the control
subsample

the treated
subsample 4
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WHAT WE ADD WITH THE
ASSUMPTIONS

dist. of Y given C like in the treated

dist. of Y given C like in the controls

dist. of M given C like in the controls
dist. of Y given (C,M) like in the treated

(for some pre-exposure covariates C)



Tool #1: weighting

* Form relevant pseudo samples
e pseudo treated sample
e pseudo control sample
e pseudo cross-world sample
* etc.

e Use:

e weighting based estimation
* requires that the weights be consistently estimated
* check balance

e can combine with tool #2



Pseudo treated/control samples

* Inverse probability weighting

* For treated units:
P(4=1|C)

e For control units:
P(A=0|C)



Pseudo cross-world sample

* Formed out of treated units
* soY given C,M dist. is that of the treated

e Also need

 distribution of C like in full sample
» distribution of M given C like in control units



Pseudo cross-world sample

3 equivalent expressions of the weight function

* First expression (Hong, 2010)
1 P(M|C,A =0)

P(A=1|C)P(M|C,A=1)

» Second expression due to a connection b/w the mediator density ratio

with a ratio of two odds (Zheng & van der Laan 2012, Huber 2014)
P(A=0|C,M) 1

P(A = 1|C,M)P(A = 0|C)




FIRST EXPRESSION
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Views from 3 expressions of the cross-world weights
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Pseudo cross-world sample

3 equivalent expressions of the weight function

* First expression (Hong, 2010)
1 P(M|C,A = 0)

P(A=1|C)P(M|C,A=1)

» Second expression due to a connection b/w the mediator density ratio
with a ratio of two odds (Zheng 2012, Huber 2014)
P(A=0|C,M) 1
P(A = 1|C,M) P(A = 0|C)

* We found a new third expression (shown in stabilized form)

P(C,M|A = 0) PIZ/(1A:0(|)3)

P(C,M|A = 1)




Views from 3 expressions of the cross-world weights
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esired balance

C balance (C,M) balance

7

pseudo treated sample

),

"\

pseudo control sample

\

+ pseudo control sample

A

$99999099909990999909990%;
00505505505095052450954%%,
pseudo cross-world sample

£5555555555555555 555555555 55%:,
055555555555545555255592555%

B A A
£555555555555553555555%5%

pseudo cross-world sample

9555555555575 555555525 25%%;
05 3555505553545405255535%%.

full sample




Tool #2: regression

 specifically, regression-based prediction (or simulation)

* can be used alone or combined with weighting

* some combinations induce robustness



Estimators In pairs

* Asimpler estimator
* solves the puzzle
* requires all modeling components to be consistent

* A more complex version
* replaces all subsamples used to fit models with relevant pseudo samples
* fit model to predictors space where model is used for prediction
* requires regression model (for prediction) to satisfy mean recovery
* even if predictions are wrong, they will be right on average (if weights are correct)
* more robust: ok if one of two components (weights or regression) correct



Estimating E'|Y; |
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Estimating E[Y; ]

multiple solutions, with different properties

we’ll show 4 pairs

with each pair, we’ll note
e simpler estimator: estimating components it relies on

* more complex estimator: the specific robustness (and nonrobustness)



“outcome imputation”

Estimating E Yy, | methoc

treated subsample control subsample pseudo control sample

we'ight to

simpler version

e control weights

* outcome regression



Estimating E[Y;p, ]

control subsample pseudo control sample
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simpler version more robust version
e control weights e control weights
* outcome regression e either outcome regression or

cross-world weights



Estimating E'[ Y1y,

treated subsample pseudo cross-world subsample full sample

weightto 724 e L R

predict Yipmo
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simpler version

* the weights

e outcome model



Estimating E'[ Y1y,

treated subsample pseudo cross-world subsample full sample
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Imai’s mediator

EStl M at| N g E [YlMO ] simulation approach

treated subsample control subsample full sample

simpler version

* mediator density

* outcome regression



Estimating E[Y;p, ]
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Estimating E'[ Y1y,

treated subsample control subsample full sample
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IRA 7%

then predict YlMOA

and average
Y

model Y
given C,M
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* two regression models



Estimating E'[ Y1y,

treated subsample control subsample full sample
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simpler version
* two regression models

robust version
» either first model or cross-world weights

e either second model or control weights



If target marginal additive effects,

treated subsample

model Y
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* There are other options and additional strategies

* Not all, but a lot can be communicated and appreciated
using this practitioner-centric lens



Some thoughts looking forward

e General

* Causal mediation analysis will be done a lot more frequently, and
more will be done by people who are not causal mediation
methodologists

 It’s super hard (I fail all the time)
but very important to seek a language that more people understand

* Specific

* We have done this for one puzzle. There remain puzzles for other

effects, especially the diverse range of interventional effects flexibly
defined



