Causal mediation analysis: from simple to more robust estimation strategies

Trang Quynh Nguyen

Johns Hopkins Bloomberg School of Public Health | trang.nguyen@jhu.edu

joint work with Elizabeth Stuart, Elizabeth Ogburn, Ian Schmid, Elizabeth Parker, Noah Greifer and Ina Koning

presentation @ CMStatistics 2021

session EO770: Causal Mediation Analysis, 2021-12-18

organizer & chair: Anita Lindmark

Motivation

- Mediation analysis is popular
- The methodological literature on causal mediation analysis is exciting, fast growing, and highly technical
 - Different types of effects
 - Assumptions
 - Lots of methods
- Recent method reviews (e.g., Vo et al., Stuart et al.) of applied mediation analyses (up until 2020)
 - Uptake slow, most still use traditional mediation analysis
 - Also lots of basic problems: temporality, confounding
- Concern about "easy" mediation analysis, especially with software that "does it for you"
 - True with traditional mediation analysis
 - Also seen in recent papers that use causal mediation analysis

Motivation

- Need to help ground practitioners in some basics
- We are not the only ones thinking this
 - e.g., the AGReMA statement (Hopin et al.) -- guideline on reporting of mediation analysis
- Our project (PI Stuart) aims to bring causal mediation analysis to mental health researchers

A series of 3 papers

- Estimands: define effects based on what we want to learn (Psych Methods)
- Identification: handle the range of effects via five potential outcome types
- Estimation: build intuitive appreciation for options including simpler and more robust methods (this talk)

Key ideas of paper

- Use two ingredients that are familiar
 - weighting
 - regression
- Treat the identification result/estimation task as a puzzle
 - find solutions using the tools
 - visualization helpful
- Solutions may be simple or complex
 - simpler nonrobust
 - more complex (combining tools) more robust
- User-friendliness
 - appeal to intuition
 - based on theory, but can hide theory

Scope of paper

- Simple setting
 - A binary exposure
 - M mediator
 - Y univariate outcome
 - C pre-exposure covariates
- Estimand: marginal natural (in)direct effects
 - contrasting the means of Y_1 , Y_0 and Y_{1M_0} (or Y_{0M_1})
- Assume effects are identified
- Alternative if don't like natural effects or the cross-world assumption
 - consider hypothetical intervention on exposure and mediator distribution
 - in simple case with no intermediate confounder
- The ideas apply to other estimands
 - solve another puzzle!

ID result/estimation task as a puzzle

Under the assumptions, the relevant potential outcome means are identified as

$$\begin{split} E[Y_1] &= E_C \{ E[Y|C, A = 1] \} \\ E[Y_0] &= E_C \{ E[Y|C, A = 0] \} \\ E[Y_{1M_0}] &= E_C (E_{M|C,A=0} \{ E[Y|C, A = 1, M] \}) \end{split}$$

ID result/estimation task as a puzzle

Tool #1: weighting

- Form relevant pseudo samples
 - pseudo treated sample
 - pseudo control sample
 - pseudo cross-world sample
 - etc.
- Use:
 - weighting based estimation
 - requires that the weights be consistently estimated
 - check balance
 - can combine with tool #2

Pseudo treated/control samples

- Inverse probability weighting
 - For treated units: $\frac{1}{P(A=1|C)}$
 - For control units: $\frac{1}{P(A=0|C)}$

Pseudo cross-world sample

- Formed out of treated units
 - so Y given C,M dist. is that of the treated
- Also need
 - distribution of C like in full sample
 - distribution of M given C like in control units

Pseudo cross-world sample

3 equivalent expressions of the weight function

- First expression (Hong, 2010) $\frac{1}{P(A = 1|C)} \frac{P(M|C, A = 0)}{P(M|C, A = 1)}$
- Second expression due to a connection b/w the mediator density ratio with a ratio of two odds (Zheng & van der Laan 2012, Huber 2014) $\frac{P(A = 0|C, M)}{P(A = 1|C, M)} \frac{1}{P(A = 0|C)}$

Views from 3 expressions of the cross-world weights

FIRST EXPRESSION

SECOND EXPRESSION

C-weighting (inverse prob weights)

M-weighting (density ratio weights)

CM-weighting (odds weights)

a pseudo cross-world subsample

C-weighting (inverse prob weights)

Pseudo cross-world sample

3 equivalent expressions of the weight function

• First expression (Hong, 2010)

$$\frac{1}{P(A=1|C)} \frac{P(M|C, A=0)}{P(M|C, A=1)}$$

- Second expression due to a connection b/w the mediator density ratio with a ratio of two odds (Zheng 2012, Huber 2014) $\frac{P(A = 0|C, M)}{P(A = 1|C, M)} \frac{1}{P(A = 0|C)}$
- We found a new third expression (shown in stabilized form)

$$\frac{P(C, M|A = 0) \frac{P(A = 0)}{P(A = 0|C)}}{P(C, M|A = 1)}$$

Views from 3 expressions of the cross-world weights

FIRST EXPRESSION

treated subsample

C-weighting (inverse prob weights)

M-weighting (density ratio weights)

SECOND EXPRESSION

treated subsample

CM-weighting (odds weights)

THIRD EXPRESSION

CM-weighting (odds weights)

(aiming at pseudo control sample)

a pseudo cross-world subsample

C-weighting (inverse prob weights)

Desired balance

Tool #2: regression

- specifically, regression-based prediction (or simulation)
- can be used alone or combined with weighting
- some combinations induce robustness

Estimators in pairs

- A simpler estimator
 - solves the puzzle
 - requires all modeling components to be consistent
- A more complex version
 - replaces all subsamples used to fit models with relevant pseudo samples
 - fit model to predictors space where model is used for prediction
 - requires regression model (for prediction) to satisfy mean recovery
 - even if predictions are wrong, they will be right on average (if weights are correct)
 - more robust: ok if one of two components (weights or regression) correct

Estimating $E[Y_1]$

multiple solutions, with different properties

we'll show 4 pairs

with each pair, we'll note

- simpler estimator: estimating components it relies on
- more complex estimator: the specific robustness (and nonrobustness)

simpler version

- control weights
- outcome regression

simpler version

- control weights
- outcome regression

more robust version

- control weights
- either outcome regression or cross-world weights

simpler version

- the weights
- outcome model

simpler version

- the weights
- outcome model

more robust version

either the weights only

or the M-part of the weights + outcome model

Imai's mediator simulation approach

simpler version

- mediator density
- outcome regression

simpler version

- mediator density
- outcome regression

more robust version

- mediator density
- either outcome model or crossworld weights

simpler version

two regression models

simpler version

two regression models

robust version

- either first model or cross-world weights
- either second model or control weights

If target marginal *additive* effects, can modify last pair to estimate NDE = $E[Y_{1M_0} - Y_0]$

related to an estimator in Zheng & van der Laan 2012

- There are other options and additional strategies
- Not all, but a lot can be communicated and appreciated using this practitioner-centric lens

Some thoughts looking forward

- General
 - Causal mediation analysis will be done a lot more frequently, and more will be done by people who are not causal mediation methodologists
 - It's super hard (I fail all the time) but very important to seek a language that more people understand
- Specific
 - We have done this for one puzzle. There remain puzzles for other effects, especially the diverse range of interventional effects flexibly defined