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Background

In public health/public policy, there are times we want to know the
broad population effects of a treatment, intervention or policy change

A randomized trial may have been conducted and an average
treatment effect estimated (SATE)

The effect of the intervention if applied to a target population
(TATE) may be different from SATE if

there is treatment effect heterogeneity, and
trial sample is different from target population w.r.t the distribution of
factors that modify treatment effects

Methods exist to estimate TATE, which require target population
covariates data, especially data on effect modifiers

re-weighting trial sample to target population
model outcome in trial and predict outcome in target population
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Background

Example 1: A trial found that a smoking cessation intervention is
effective for heavy cigarette smokers who attend treatment programs
for abuse of illicit substances. Do we want to scale up this
intervention to cover people who seek substance abuse treatment in
the US who are heavy smokers?

Example 2: A trial found that an antiretroviral therapy regimen is
superior to a standard regimen in improving immune function. Should
this regimen be generally recommended for people living with HIV?

Trang Quynh Nguyen generalization sensitivity analysis ACIC 2017 UNC 4 / 23



Purpose

What if

there is an effect modifier observed in the trial but we don’t have data
on it from the target population?

we are concerned there might be effect modification that is not even
observed in the trial?

Sensitivity analyses are needed.

Our purpose: Develop simple procedures for use by substantive scientists
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Notation

A: treatment (0,1), randomized in the trial
Y : outcome (observed only in the trial)
Y a: potential outcome under treatment a, a = 0, 1

S = 1: trial participation
P = 1: target population membership

SATE = E[Y 1 − Y 0|S = 1]

TATE = E[Y 1 − Y 0|P = 1]
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Notation

Target population data scenarios:

a full population (P = 1) dataset

a representative sample (S = 2) dataset

summary statistics

𝑺 = 𝟏

𝑷 = 𝟏

𝑺 = 𝟏

𝑷 = 𝟏

𝑺 = 𝟐

𝑺 = 𝟏

𝑷 = 𝟏

summary

statistics
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Notation

X : non-effect-modifying covariates

Z : effect modifiers, observed in trial and target population

either V : partially unobserved effect modifier (observed in trial, not population)

or U: fully unobserved effect modifier
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Assumptions

A1 Internal validity of the trial: conditional ignorability of treatment
assignment, positivity, treatment variance irrelevance, no interference, etc.

A2 Across-setting treatment variation irrelevance

A3 Effect modifiers coverage: the range of the effect modifiers in target
population is covered by trial

A4 Conditional sample ignorability for treatment effects:
[Y 1 − Y 0] ⊥ {S ,P} | Z ,V , (S = 1 or P = 1)

A5 No measurement error: X ,Z are measured the same way in trial and target
population, and measured without error

A6 Additive potential outcomes model:

E[Y a
i ] = β0 + βxXi + βzZi + βvVi + βaa + βzaZia + βvaVia
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For a partially unobserved effect modifier (V case)

TATE = βa + βzaE[Z | P = 1] + βvaE[V | P = 1]

Two options:

1 Outcome-model-based sensitivity analysis

i. obtain estimate for E[Z | P = 1] and specify range for E[V | P = 1]
ii. estimate βa, βza, βva using trial data
iii. combine

2 Weighted-outcome-model-based sensitivity analysis

. weight trial sample to resemble target population w.r.t Z ,X
i. obtain estimate for E[Z | P = 1] and specify range for E[V | P = 1]
ii. estimate βa, βza, βva using the weighted trial data
iii. combine
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Example of a V case

Smoking cessation intervention for heavy smokers among attendants of
alcohol/substance abuse treatment: SATE = 10 fewer cigarettes per day

Z : being African-American, baseline daily number of cigarettes

V : baseline addiction score; E [V | S = 1] = 4.05

Target pop: people who seek alcohol/substance treatment who smoke heavily
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For fully unobserved effect modification (U case)

Cannot use

TATE = βa + βzaE[Z | P = 1] + βuaE[U | P = 1]

Hope to use

TATE = SATE + βza{E[Z | P = 1]− E[Z | S = 1]}+
+ βua{E[U | P = 1]− E[U | S = 1]}
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For fully unobserved effect modification (U case)

U: the remaining composite effect modifier

captures all unobserved factors that modify treatment effects

independent of observed covariates and effect modifiers X ,Z

which means can estimate βza using the regression model

E[Yi ] = β0 + βaAi + βxXi + βzZi + βzaZiAi .
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For fully unobserved effect modification (U case)

TATE = SATE + βza{E[Z | P = 1]− E[Z | S = 1]}+ βua∆u

TATE = wtd.ATE + βza

{
E[Z | P = 1]−

∑
Wi (Si = 1)Zi∑
Wi (Si = 1)

}
+ βua∆u

≈ wtd.ATE + βua∆u

Two options:

1 Bias-formula-based sensitivity analysis
i. obtain estimate for E[Z | P = 1] and specify ranges for βua and ∆u

ii. estimate SATE, E[Z | S = 1] and βza using trial data
iii. combine

2 Weighting-plus-bias-formula-based sensitivity analysis
. weight trial sample to resemble target population w.r.t Z ,X
i. obtain estimate for E[Z | P = 1] and specify ranges for βua and ∆u

ii. estimate wtd.SATE,
∑

Wi (Si=1)Zi∑
Wi (Si=1) and βza using weighted trial data

iii. combine
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Example of a U case (data artificially altered)

Trial comparing a new antiretroviral therapy regimen to an old one:
SATE = increase CD4 count by 36 cells/ml at 2 months post treatment

Z : being White and without severe immune suppression (interaction term
coef ≈ −15), age (interaction term coef ≈ 11 per SD)

concerned about U: specify ∆u = (0, 0.7) and βua = (−15, 15)

Target population: people with HIV in the US
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How about multiplicative treatment effects?

Big limitation: the assumption of additive treatment effects

Want flexibility in choosing effect scale

Effects may be less heterogeneous on one scale than on another
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Binary outcome: alternative effect definitions

ATE previously defined is the average (arithmetic mean) of the additive individual
treatment effects, i.e.,

RDi = pr(Y 1
i = 1)− pr(Y 0

i = 1)

What if we define individual treatment effects on a multiplicative scale, e.g.,

RRi =
pr(Y 1

i = 1)

pr(Y 0
i = 1)

, ORi =
odds(Y 1

i = 1)

odds(Y 0
i = 1)

We could define ATE as the average (geometric mean) of the individual
treatment effects

ATERR = exp

{
E

[
log

pr(Y 1
i = 1)

pr(Y 0
i = 1)

]}
, ATEOR = exp

{
E

[
log

odds(Y 1
i = 1)

odds(Y 0
i = 1)

]}

(If willing to think of effects as log-RRs or log-ORs, have arithmetic mean back.)
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Binary outcome: assume a generalized linear causal model

e.g.,

log[odds(Y a
i = 1)] = β0 + βaa + βzaZia + βvaVia + βxXi + βzZi + βvVi

Works for V case!

TATEOR = exp{βa + βzaE[Z | P = 1] + βvaE[V | P = 1]}

allows the two options

outcome-model-based sensitivity analysis

weighted-outcome-model-based sensitivity analysis

Also works if use RR-scale effects and model for log[pr(Y a
i = 1)].
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Binary outcome: assume a generalized linear causal model

log[odds(Y a
i = 1)] = β0 + βaa + βzaZia + βuaUia + βxXi + βzZi + βuUi

Does not work for U case!

ATE is now the average of conditional effects, conditioning on X ,Z ,U.

We would hope to rely on

TATEOR = SATEOR · exp(βza{E[Z | P = 1]− E[Z | S = 1]}+ βua∆u)

but both βza and

SATEOR = exp{βa + βzaE[Z | S = 1] + βuaE[U | S = 1]}

cannot be estimated without observing U; ORs are non collapsible.
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Next steps

extend to make use of target population outcome data when available

extend V -case methods to address the situation when the scientist is
concerned about a specific possible effect modifier that was not
measured in the trial

explore a simulation-based approach for the U case with
non-collapsible effects
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