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Problem: covariate nonoverlap

ATE estimation requires covariate overlap

but covariate nonoverlap is common

inverse probability weights (IPW) for covariate
balancing are unbounded and may be extreme
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What to do?

a common way to handle this is to drop observations in nonoverlap areas

usually based on propensity scores

I discrete set weight to zero

I propensity scores δ-close to 0 or 1 (Crump et al. 2009)
I a continuous-ized version (Yang and Ding 2018)

I smooth drop weight to zero

I original overlap weights (Crump et al. 2006; Li, Morgan, and Zaslavsky
2018; Li and Li 2019)

I other variants for the binary treatment case (Zhou, Matsouaka, and
Thomas 2020; Matsouaka and Zhou 2020)

I matching weights (Li and Greene 2013; Yoshida et al. 2017)

an alternative used in practice is trimming weights
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Notation

original covariate density forigin(x)

target (ie weighted) covariate density ftarget(x)

tilting function h(x) = ftarget(x)/forigin(x)

propensity score ek(x) with k for group, or vector e(x)

the weighting function ∝ h(x)/ek(x)

I balances covariates

I achieves ftarget(x)

overlap weighting: h(x) = 0 if min[e(x)] = 0
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The original overlap weighting scheme (OOW)

for reference:
IPW if could restrict to overlap

original overlap weights (OOW)
designed to target an overlap subpop,
aka “moving the goalpost”

h(x) ∝ harmonic.mean[e(x)]

nice properties

I zeros out nonoverlap; shrink (amplify) where pscores are dissimilar (similar)

I if outcome Y homoscedastic conditional on treatment A and covariates X , leads
to weighted ATE with the smallest variance bound among all WATEs

some reservations

I no pre-defined target population

... maybe should try to better characterize target population
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Consider 2 existing overlap weighting schemes

for reference:
IPW if could restrict to overlap

original overlap weights (OOW)
designed to target an overlap subpop,
aka “moving the goalpost”

h(x) ∝ harmonic.mean[e(x)]

matching weights (MW)
designed to mimic 1-to-1 matching

h(x) ∝ min[e(x)]
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question 1

IPW if could restrict to overlap

original overlap weights (OOW)

matching weights (MW)

CAN WE HAVE SOME KIND OF CONTINUUM HERE?
– that gives more say on target population
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Power means!

OOW: h(x) ∝ harmonic mean of e(x)

I aka power mean with power param −1

MW: h(x) ∝ minimum of e(x)

I aka power mean with power param −∞

IPW w/in overlap area: h(x) ∝ arithmetic mean of e(x) (= 1/K )

I aka power mean with power param 1
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Semi-flexible overlap weighting: a propensity score
weighting family

h(x) ∝ power.mean[e(x), ρ], ρ ≤ 0
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power param ρ governs degree to which areas with dissimilar pscores are
shrunk and areas with similar pscores areas are expanded
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Semi-flexible overlap weighting: a propensity score
weighting family

power param ρ governs degree to which areas with dissimilar pscores are
shrunk and areas with similar pscores areas are expanded
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the story looks simple so far, in the case where the groups are balanced

what would this look like if the groups are not balanced?
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treat:control = 5:1

this moves the goalpost a lot!
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An alternative view of the SOW family

h(x) is a function of e(x),

which depends on both

(i) the relative density of x in the different groups – denoted gk(x)

(ii) the relative sizes of the groups – denoted sk

(in vector form, g(x) and s)

could tease these apart
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Dual representation

The weighting schemes above could be seen in two ways:

I as propensity score weighting (current view)

I as combination of groups, or “mixing” group covariate distributions
(alternative view)

A motivation for the second view:

I sometimes we don’t get a sample in which people are assigned one of several
treatments

I rather we just get groups with different treatment conditions, eg a group on
duloxetine and a group on vortioxetine from EHR data
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Teasing apart group density and group size

for simplicity, leave out nonoverlap

raw data treated density control density

key connection between the two representations:
e1(x)

e0(x)
=

g1(x)

g0(x)

s1

s0

target density ∝ weighted power mean of group-specific densities where
group-weight is power of group size
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Powered-size-weighted power mean of group densities

OOW:

ftarget(x) ∝ power.mean(g(x), power = −1, group.weight ∝ s−1)

ie inverse-size-weighted harmonic mean of group-specific densities
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Powered-size-weighted power mean of group densities

OOW:

ftarget(x) ∝ power.mean(g(x), power = −1, group.weight ∝ s−1)

ie inverse-size-weighted harmonic mean of group-specific densities

size ratio 5:1 −→ combination ratio 1:5
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Powered-size-weighted power mean of group densities

OOW:

ftarget(x) ∝ power.mean(g(x), power = −1, group.weight ∝ s−1)

ie inverse-size-weighted harmonic mean of group-specific densities

simple combination:

ftarget(x) ∝ power.mean(g(x), power = 1, group.weight ∝ s)

ie size-weighted arithmetic mean of group-specific densities

treated within overlap control within overlap combo restricted to overlap rho = −1 (OOW)

18 / 30



Second view of SOW family

ftarget(x) ∝ power.mean(g(x), power = ρ, group.weight ∝ sρ), ρ ≤ 0

the group weights are tied to the power parameter!

This family favors the smaller groups

Only ρ = 0 is group size “neutral”:

ftarget(x) ∝ power.mean(g(x), power = 0, group.weight ∝ s0 = 1)

ie unweighted geometric mean of group-specific densities
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SOW: tilting function as a function of group density ratio,
for varying group size ratio
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question 2

Can we move the goalpost but not so much?

or CAN WE HAVE MORE SAY ABOUT WHERE THE GOALPOST GOES?

eg keep group weights proportional to size?

or something else?
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Flexible overlap weighting: untie group weights from power
parameter

ftarget(x) ∝ weighted.power.mean(g(x), power = ρ, group.weight = ω)

for ρ ≤ 0

and ω > 0 specified based on intended/ideal target pop
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How can this flexibility help?

roughly, we can have OW versions of any weighting scheme

(bending the goalpost but not quite moving it somewhere else)

24 / 30



example: ideal is ATE/ATT/ATC
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example: ideal is ATE on an external target population

the usual way

I IPW within study sample to balance treatment groups

I odds weighting to mimic target covariate distribution

a flexoweight way

I stack samples, treat target sample as a group

I 3-way FOW, using ω with large target weight, eg (.8, .1, .1) or (.9, .05, .05)
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how to choose ρ for FOW

ρ = 0 results in the least distortion of the target

dial it up (ie make it more negative) if some weights still too large
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In progress

I weights estimation

I statistical inference

I illustrative applications

I package flexoweight
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THANK YOU!

trang.nguyen@jhu.edu
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