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Noncompliance and principal stratification

The study of treatment effects often complicated by noncompliance
or other significant post-treatment events

One might be interested in the effect of receiving treatment
or effect of treatment given a post-treatment event

But would break randomization

Principal stratification (Frangakis & Rubin 2002)

avoids this problem by creating a new pre-treatment variable
and considering effects stratified on it
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Notation

Z treatment assigned (binary)

Y outcome

Y1,Y0 potential outcomes (potential values of Y )

X baseline covariates

S treatment received or post-treatment event (here binary)

C principal stratum, defined based on potential values (S1, S0) of S

Principal causal effects: E[Y1 − Y0 | C = c], where c is a value of C
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Setting

Our setting:

▶ Y well-defined generally

▶ one-sided noncompliance (extendable to two-sided)

Example: JOBS II

▶ unemployed workers are randomized to intervention (training to improve job
searching skills and mental health) or control (booklet with job search tips)

▶ about half of those assigned to intervention didn’t attend

▶ outcomes: work, earnings, depressive symptoms

Two principal strata (aka compliance types)

▶ those who would attend if offered the intervention, aka compliers (C = 1)

▶ those who would not attend if offered the intervention, aka noncompliers (C = 0)

Estimands: complier and noncomplier average causal effects (CACE, NACE)

∆c := E[Y1 − Y0 | C = c] for c = 1, 0
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The identification challenge: C is partially observed

∆c = E[Y1 | C = c] − E[Y0 | C = c]

Several identification strategies

▶ IV strategy (ER assumption): treatment assigned affects outcome only
through treatment received

▶ ie no effects on noncompliers

▶ Principal ignorabilty (PI): conditional on X , principal stratum does not
carry info about outcome under control

▶ appealing if don’t want to assume NACE=0 and rich covariates

▶ E[Y | X ,Z = 0,C = 0] = E[Y | X ,Z = 0,C = 1]

▶ etc.
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Our focus on PI

E[Y | X ,Z = 0,C = 1] = E[Y | X ,Z = 0,C = 0]

Need sensitivity analyses – just like with any other untestable assumptions
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Inspiring prior work

Ding and Lu (2017) use a mean ratio sensitivity parameter

E[Y | X ,Z = 0,C = 1]

E[Y | X ,Z = 0,C = 0]
= ρ

and modify a PI-based weighting estimator to incorporate ρ
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Objective

Develop sensitivity analyses for PI violation that

▶ use a range of sens params

▶ handle a range of estimators
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Some shorthand notation

Stratum-specific outcome means

and variances

µzc (X ) := E[Y | X ,Z = z,C = c]

in this notation, PI is
µ01(X ) = µ00(X )
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Some shorthand notation

Stratum-specific outcome means and variances

µzc (X ) := E[Y | X ,Z = z,C = c]

σ2
zc (X ) := var(Y | X ,Z = z,C = c)

Stratum-agnostic outcome means and variances

κ0(X ) := E[Y | X ,Z = 0]

ζ20 (X ) := var(Y | X ,Z = 0)

Principal scores
πc (X ) := P(C = c | X ,Z = 1)

Propensity scores
e(X ,Z) = P(Z | X )
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A range of sens assumptions with different sens params

Recall PI: µ01(X ) = µ00(X ).

Sens assumptions:

sens-MR:
µ01(X )

µ00(X )
= ρ,

sens-OR:
µ01(X )/[1− µ01(X )]

µ00(X )/[1− µ00(X )]
= ψ,

sens-GOR:
[µ01(X )− l ]/[h − µ01(X )]

[µ00(X )− l ]/[h − µ00(X )]
= ψ

where l and h are the lower and upper outcome bounds,

sens-SMD:
µ01(X )− µ00(X )√
[σ2

01(X ) + σ2
00(X )]/2

= η,

for some range of ρ, ψ or η that is considered plausible.
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PI-based identification of ∆c

Under unconfoundedness

E[Yz | C = c] =
E[πc(X )µzc(X )]

E[πc(X )]

where µ1c(X ) is an observed data function,
but µ0c(X ) is an unknown in the mixture equation

π1(X )µ01(X ) + π0(X )µ00(X ) = κ0(X ).

PI says
µ01(X ) = µ00(X ),

so
µ0c(X ) = κ0(X ).

Hence under PI + unconfoundedness

∆c =
E{πc(X )[µ1c(X )− κ0(X )]}

E[πc(X )]
.

For sens analysis, need the sens assumption to help solve the mixture equation.
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PI-based estimation: 3 estimator types from a sens analysis perspective

Sens analysis = a modification of main analysis
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PI-based estimation: 3 estimator types from a sens analysis perspective

Sens analysis = a modification of main analysis

▶ Type A (≈ outcome regression estimators)

▶ estimates κ0(X ) to first estimate effects conditional on covariates and then
aggregates them to estimate CACE/NACE, eg∑n

i=1 π̂c (Xi )[µ̂1c (Xi )− κ̂0(Xi )]∑n
i=1 π̂c (Xi )

,

∑n
i=1

Zi
ê(Xi ,Zi )

I(Ci = c)[Yi − κ̂0(Xi )]∑n
i=1

Zi
ê(Xi ,Zi )

I(Ci = c)

▶ sens analysis technique: replace κ0(X ) by the identification result of µ0c (X )
under the sens assumption
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PI-based estimation: 3 estimator types from a sens analysis perspective

Sens analysis = a modification of main analysis

▶ Type B (≈ influence function based estimators)

▶ write
∆PI

c =
ν1c − νPI0c

πc

where νzc := E[πc (X )µzc (X )], νPI0c := E[πc (X )κ0(X )], πc := E[πc (X )]

▶ a type B estimator can be expressed as combination of IF-based estimators
of πc , ν1c and νPI0c

ν̂1c,if − ν̂PI0c,if

δ̂c,if

▶ sens analysis technique: replace ν̂PI0c,if with an IF-based estimator of ν0c
under the sens assumption
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PI-based estimation: 3 estimator types from a sens analysis perspective

Sens analysis = a modification of main analysis

▶ Type C (≈ other/weighting estimators)

▶ an example is the pure weighting estimator∑n
i=1

Zi
ê(Xi ,Zi )

I(Ci = c)Yi∑n
i=1

Zi
ê(Xi ,Zi )

I(Ci = c)
−

∑n
i=1

1−Zi
ê(Xi ,Zi )

π̂c (Xi )Yi∑n
i=1

1−Zi
ê(Xi ,Zi )

π̂c (Xi )

▶ no specific sens analysis technique; consider case by case
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Under sens-GOR and sens-OR

Let ψ1 = ψ, ψ0 = 1/ψ

Under sens-GOR,

µ0c (X ) =


∗︷ ︸︸ ︷

[πc (X )+κ⋄
0 (X )](ψc−1)+1−

√
∗2−4πc (X )κ⋄

0 (X )ψc (ψc−1)

2(ψc−1)πc (X )
(h − l) + l if ψc ̸= 1

κ0(X ) if ψc = 1

where κ⋄0 (X ) := [κ0(X )− l ]/(h − l)

Under sens-OR,

µ0c (X ) =


∗︷ ︸︸ ︷

[πc (X )+κ0(X )](ψc−1)+1−
√

∗2−4πc (X )κ0(X )ψc (ψc−1)
2(ψc−1)πc (X )

if ψc ̸= 1

κ0(X ) if ψc = 1

These results allow using the techniques of replacing κ0(X ) and νPI0c for
type A and type B estimators

13 / 20



Under sens-MR

Let ρ1 = ρ, ρ0 = 1/ρ

Under sens-MR,

µ0c (X ) =
ρc

(ρc − 1)πc (X ) + 1
κ0(X )

This result allows modifying estimators of all three types

(for type C, scale the outcome in those under control)

14 / 20



Under sens-SMD and variants

Let η1 = η, η0 = −η

Under sens-SMD, ∆c lies between the two bounds:

∆PI
c − ηc E

[
π1(X )π0(X )ζ0(X )√

1 ± |π1(X ) − π0(X )| + η2π1(X )π0(X )

]
/πc .

If supplement with the assumption that 1
k
≤ σ2

01(X )

σ2
00(X )

≤ k for a specified k > 1

(sens-SMDr), the bounds are tightened:

∆PI
c − ηc E

 π1(X )π0(X )ζ0(X )√
1 ± k−1

k+1 |π1(X ) − π0(X )| + η2π1(X )π0(X )

 /πc .

If supplement with the assumption that σ2
01(X ) = σ2

00(X ) (sens-SMDe), achieve point
identification:

∆PI
c − ηcE

[
π1(X )π0(X )ζ0(X )√
1 + η2π1(X )π0(X )

]
/πc .

Sens analysis focuses on estimating the difference term
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JOBS II results
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Some things we noticed

▶ Partial loss of multiple robustness

because µ0c (X ) is a function of πc (X ) and κ0(X )

▶ A pattern of finite-sample bias for the sens analysis where effect estimates
are less extreme than should be

because E[Y0 | C = c] =
E[πc (X )µ0c (X )]

E[πc (X )]
is a weighted average where the

function being averaged depends on the weight
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To sum up

Expanded options for sens analysis for PI violation in CACE/NACE estimation
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Next step

Risk of contradicting the observed data distribution

▶ sens-OR (binary Y ): none

▶ sens-MR: substantial

▶ sens-GOR and sens-SMD: reduced

On-going work: a sens analysis fully informed by P(Y | X ,Z = 0)
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THANK YOU!
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