Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects

Trang Quynh Nguyen^{*} (tnguye28@jhu.edu), Cyrus Ebnesajjad,^{*} Stephen R. Cole^{**} and Elizabeth A. Stuart^{*}

^{*}Johns Hopkins Bloomberg School of Public Health, ^{**}University of North Carolina Funding thanks to NIDA T32-DA007292, NSF DRL-1335843

ENAR invited session 112: Generalizing Clinical Data Across Studies/Populations Austin TX, March 9, 2016

Background

- In public health/public policy, there are times we want to know the broad population effects of an intervention (e.g., a substance abuse treatment model) or policy change (e.g., handgun control laws)
- A randomized trial may have been conducted and an intervention effect estimated in the trial (SATE)
- SATE is different from the effect of the intervention if applied to a target population (TATE) if
 - there is intervention effect heterogeneity, and
 - the trial sample is different from the target population with respect to the distribution of factors that modify intervention effects
- Methods exist to estimate TATE, which require target population covariates data, especially data on effect modifiers
 - re-weighting trial sample to target population (Cole & Stuart, 2010)
 - model outcome in trial and predict outcome in target population (Kern et al., 2016)

The problem

But what if

- there is an effect modifier observed in the trial but we don't have data on it from the target population?
- we are concerned there might be effect modification that is not even observed in the trial?

Sensitivity analyses are needed.

Our purpose: develop simple procedures for use by substantive scientists.

Notation

T: treatment (0,1), randomized in the trial *Y*: outcome (observed only in the trial) Y^t : potential outcome under treatment t, t = 0, 1

Two datasets: trial data and a dataset representing the target population S: sample membership (1=trial, 0=target population) SATE = $E_{S=1}[Y^1 - Y^0]$ and TATE = $E_{S=0}[Y^1 - Y^0]$

- X: non-effect-modifying covariates
- Z: effect modifiers, observed in both samples

either V: effect modifier, observed in the trial but not the target population or U: effect modifier, not observed in both samples

X, Z, V, U may be associated with S.

Toy example: A smoking reduction intervention

	Randomized trial sample			Target population
V case:	Treatment	Control	Full	sample
	(n=200)	(n=200)	sample	(n=10,000)
Covariates				
X = Years of education: mean (SD)	12.06 (1.64)	12.11 (1.58)	12.08 (1.61)	11.02 (1.52)
Z = Gender: percent female	49.50	50.50	50.00	19.86
V = Years smoked: mean (SD)	7.36 (2.57)	7.50 (2.45)	7.43 (2.51)	not observed
Outcome	. ,	. ,	. ,	
Y = Cigarettes per week: mean (SD)	97.42 (6.00)	101.80 (5.29)	99.61 (6.06)	not observed

	Randomized trial sample			Target population
U case:	Treatment	Control	Full	sample
	(n=200)	(n=200)	sample	(n=10,000)
Covariates				
X = Years of education: mean (SD)	12.06 (1.64)	12.11 (1.58)	12.08 (1.61)	11.02 (1.52)
Z = Gender: percent female	49.50	50.50	50.00	19.86
U ?				
Outcome				
Y = Cigarettes per week: mean (SD)	97.42 (6.00)	101.80 (5.29)	99.61 (6.06)	

5/22

Proposed sensitivity analyses

V case

- bias-formula-based method
- weighting-based method
- hybrid method

U case

- bias-formula-based method
- hybrid method

Assumptions

- ▶ Sample ignorability for treatment effects: $(Y^1 Y^0) \perp S | Z, V$
 - no other effect modifiers
 (or if any, they are independent of S conditional on Z, V)
- Overlap: the ranges of the effect modifiers in the target population are covered by their ranges in the trial
- Bias-formula-based and hybrid methods: an additive model for the potential outcomes of the form E[Y_i^t] = β₀ + β_tt + β_{zt}Z_it + β_{vt}V_it + f_{xzv}(X_i, Z_i, V_i)
 - no three-way interaction ZVt
- ▶ Weighting-based method: distribution assumptions for V

$$\begin{split} \mathsf{E}[Y_i^1] - \mathsf{E}[Y_i^0] &= \beta_t + \beta_{zt} Z_i + \beta_{vt} V_i \\ \Rightarrow \mathsf{SATE} &= \beta_t + \beta_{zt} \mathsf{E}_{S=1}[Z] + \beta_{vt} \mathsf{E}_{S=1}[V] \\ \mathsf{TATE} &= \beta_t + \beta_{zt} \mathsf{E}_{S=0}[Z] + \beta_{vt} \mathsf{E}_{S=0}[V] \\ \mathsf{SATE} - \mathsf{TATE} &= \beta_{zt} (\mathsf{E}_{S=1}[Z] - \mathsf{E}_{S=0}[Z]) + \beta_{vt} (\mathsf{E}_{S=1}[V] - \mathsf{E}_{S=0}[V]) \end{split}$$

Bias-formula-based sensitivity analysis:

- Estimate SATE, $E_{S=1}[Z]$, $E_{S=1}[V]$, $E_{S=0}[Z]$
- ► Estimate β_{zt} , β_{vt} using regression analysis of trial data $Y = \beta_0 + \beta_t T + \beta_{zt} ZT + \beta_{vt} VT + f_{xzv}(X, Z, V) + \epsilon$
- Specify a plausible range for E_{S=0}[V]
- ► Get a range for the point estimate of TATE $\widehat{\text{TATE}} = \widehat{\text{SATE}} - \hat{\beta}_{zt} (\hat{\mathsf{E}}_{S=1}[Z] - \hat{\mathsf{E}}_{S=0}[Z]) - \hat{\beta}_{vt} (\hat{\mathsf{E}}_{S=1}[V] - \underline{\mathsf{E}}_{S=0}[V])$

If V were observed in both samples, could weight trial sample to resemble target population w.r.t the distribution of Z, V, and estimate TATE.

► The weights, $W_i = \frac{P(S = 0|Z_i, V_i)}{P(S = 1|Z_i, V_i)}$, are based on a model fit to the stacked dataset (combining the two samples)

• Rewrite
$$W_i = \frac{\mathsf{P}(S=0|Z_i)}{\mathsf{P}(S=1|Z_i)} \cdot \frac{\mathsf{P}(V=V_i|Z_i, S=0)}{\mathsf{P}(V=V_i|Z_i, S=1)}$$

Weighting-based sensitivity analysis:

- ► Instead, obtain $\frac{P(S = 0|Z_i)}{P(S = 1|Z_i)}$ for trial participants
- Estimate $P(V = V_i | Z_i, S = 1)$ for trial participants
- Specify a plausible range for P(V|Z, S = 0)
- ► For each instance in the range, compute P(V = V_i|Z_i, S = 0), assemble W_i, weight trial sample, and estimate TATE
- This gives a range for TATE with confidence limits

If we just weight the trial sample using $W_i^{|Z_i|} = \frac{P(S=0|Z_i)}{P(S=1|Z_i)}$ and estimate an ATE, we get a Z-adjusted ATE (zATE)

$$zATE = \beta_t + \beta_{zt}E_{S=1,W^{|Z}}[Z] + \beta_{vt}E_{S=1,W^{|Z}}[V]$$
$$= \beta_t + \beta_{zt}E_{S=0}[Z] + \beta_{vt}E_{S=1,W^{|Z}}[V]$$
$$zATE - TATE = \beta_{vt}(E_{S=1,W^{|Z}}[V] - E_{S=0}[V])$$

Hybrid method sensitivity analysis:

- Weight trial sample using $W_i^{|Z_i}$ and estimate zATE, $E_{S=1,W^{|Z|}}[V]$
- Estimate β_{vt} using regression analysis of unweighted trial data $Y = \beta_0 + \beta_t T + \beta_{zt} ZT + \beta_{vt} VT + f_{xzv}(X, Z, V) + \epsilon$
- ► Specify a plausible range for E_{S=0}[V]
- Get a range for the point estimate of TATE $\widehat{\text{TATE}} = \widehat{z\text{ATE}} - \hat{\beta}_{vt}(\hat{\mathsf{E}}_{S=1,W^{|Z}}[V] - \underline{\mathsf{E}}_{S=0}[V])$

V case toy example

	Trial sample			Target population
OBSERVED DATA:	Treatment	Control	Full	sample
	(n=200)	(n=200)	sample	(n=10,000)
<u>Covariates</u>				
X = Years of education: mean (SD)	12.06 (1.64)	12.11 (1.58)	12.08 (1.61)	11.02 (1.52)
Z = Gender: percent female	49.50	50.50	50.00	19.86
V = Years smoked: mean (SD)	7.36 (2.57)	7.50 (2.45)	7.43 (2.51)	not observed
Outcome				
Y = Cigarettes per week: mean (SD)	97.42 (6.00)	101.80 (5.29)	99.61 (6.06)	not observed

Models fit to data:

SATE model: $\hat{Y} = 120.31 - 2.02X - 4.36Z + 1.09V - 4.39T$ effect mod. model: $\hat{Y} = 120.81 - 2.03X - 2.74Z + 0.93V - 5.11T - 3.27ZT + 0.32VT$ $\widehat{SATE} = -4.39, 95\%$ CI=(-5.05, -3.73)

V case toy example

- Bias-formula-based sensitivity analysis
 - ► E_{S=0}[V] range specified to be 6-9 (smoking years)
- Weighting-based sensitivity analyses
 - $\frac{P(S = 0|Z)}{P(S = 1|Z)}$: two values for female and male participants
 - P(V|Z, S = 1): Informed by trial data, assume and estimate a normal distribution conditional on gender
 - P(V|Z, S = 0): In target population, suppose no reason to believe that women or men have smoked longer → specify normal distribution not conditional on gender, assuming variance equal to marginal variance from trial, with a moving mean (E_{S=0}[V]) as the sensitivity parameter, also on the 6-9 range
- Hybrid method sensitivity analyses
 - $\widehat{zATE} = -3.48, 95\% CI = (-4.21, -2.76)$
 - $E_{S=1,W|Z}[V] = 7.14, 95\%$ CI= (6.86, 7.43)
 - $E_{S=0}[V]$ range specified to be 6-9 (smoking years)

V case toy example

bias-formula-based method

average number of smoking years, target population

hybrid (from-SATE-to-zATE-to-TATE) method

average number of smoking years, target population

three sensitivity analyses

weighting method

イロン イヨン イヨン イヨン

U case: concerned about unobserved effect modification

Assumptions:

- ▶ Sample ignorability for treatment effects: $(Y^1 Y^0) \perp S | Z, U$
- ► Overlap: the target population ranges of *Z*, *U* are covered by their ranges in the trial
- An additive model for the potential outcomes of the form $E[Y_i^t] = \beta_0 + \beta_t t + \beta_{zt} Z_i t + \beta_{ut} U_i t + f_{xzu}(X_i, Z_i, U_i)$
- Additional assumption: U is independent of Z
 - the absence of U does not bias β_{zt}

\Rightarrow **Definition**:

- $U_{(z)} \equiv$ remaining composite effect modifier after accounting for Z
 - Interpretation
 - a composite of residuals of unobserved effect modifiers
 - alternative: a natural variable, but have to assume it is the only unobserved effect modifier and is independent of Z (likely untrue)

U case: concerned about unobserved effect modification

 $SATE - TATE = \beta_{zt}(E_{S=1}[Z] - E_{S=0}[Z]) + \beta_{ut}(E_{S=1}[U_{(z)}] - E_{S=0}[U_{(z)}])$

Bias-formula-based sensitivity analysis:

- Estimate SATE, $E_{S=1}[Z]$, $E_{S=0}[Z]$
- Estimate β_{zt} using regression analysis $Y = \beta_0 + \beta_t T + \beta_{zt} ZT + f_{xzv}(X, Z) + \epsilon$
- Specify plausible ranges for two sensitivity parameters β_{ut} and $E_{S=1}[U_{(z)}] E_{S=0}[U_{(z)}]$
- Get a surface for the point estimate of TATE

U case: concerned about unobserved effect modification

Hybrid method sensitivity analysis for $U_{(z)}$:

• Weight trial sample using $W_i^{|Z_i|}$ and estimate zATE

$$zATE = \beta_t + \beta_{zt}E_{S=1,W|z}[Z] + \beta_{ut}E_{S=1,W|z}[U_{(z)}]$$
$$= \beta_t + \beta_{zt}E_{S=0}[Z] + \beta_{ut}E_{S=1}[U_{(z)}]$$
$$zATE - TATE = \beta_{ut}(E_{S=1}[U_{(z)}] - E_{S=0}[U_{(z)}])$$

- ► Specify plausible ranges for two sensitivity parameters β_{ut} and $E_{S=1}[U_{(z)}] E_{S=0}[U_{(z)}]$
- Get three surfaces for TATE point estimate and confidence limits $\widehat{\text{TATE}} = \widehat{z\text{ATE}} - \beta_{ut}(\mathbb{E}_{S=1}[U_{(z)}] - \mathbb{E}_{S=0}[U_{(z)}])$

Alternative: Hybrid method sensitivity analysis for $U_{(xz)}$:

$$\widehat{\mathsf{TATE}} = \widehat{\mathsf{xzATE}} - \beta_{ut} (\mathsf{E}_{S=1}[U_{(\mathsf{xz})}] - \mathsf{E}_{S=0}[U_{(\mathsf{xz})}])$$

U case toy example

	RCT sample			Target population
OBSERVED DATA:	Treatment	Control	Full	sample
	(n=200)	(n=200)	sample	(n=10,000)
Covariates				
X = Years of education: mean (SD)	12.06 (1.64)	12.11 (1.58)	12.08 (1.61)	11.02 (1.52)
Z = Female gender: percent	49.50	50.50	50.00	19.86
U?				
Outcome				
Y = Cigarettes per week: mean (SD)	97.42 (6.00)	101.80 (5.29)	99.61 (6.06)	

Models fit to data:

SATE model: $\hat{Y} = 128.09 - 2.03X - 3.35Z - 4.53T$

effect modification model: $\hat{Y} = 127.50 - 2.04X - 1.98Z - 3.16T - 2.74ZT$

 $\widehat{\mathsf{SATE}} = -4.53, 95\% \ \mathsf{CI} = (-5.37, -3.69)$

U case toy example

- Bias-formula-based sensitivity analysis for $U_{(z)}$
 - β_{ut} range: from -3 to 3 years per SD of $U_{(z)}$
 - ► $E_{S=1}[U_{(z)}] E_{S=0}[U_{(z)}]$ range: from -.7 to .7 SD
- Hybrid method sensitivity analysis for $U_{(xz)}$
 - $\overrightarrow{xzATE} = -3.39, 95\% \text{ CI} = (-4.72, -2.08)$
 - β_{ut} range: from -3 to 3 years per SD of $U_{(z)}$
 - $E_{S=1}[U_{(xz)}] E_{S=0}[U_{(xz)}]$ range: from -.7 to .7 SD

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ ���

18 / 22

U case toy example

two sensitivity analyses

hybrid (from-SATE-to-xzATE-to-TATE) method

Options for the two cases

	V case	U case
with some Z	bias-formula-based weighting-based hybrid (via zATE)	bias-formula-based $[U_{(z)}]$ hybrid $[U_{(z)}$ or $U_{(xz)}]$
with no Z	bias-formula-based weighting-based	bias-formula-based [<i>U</i>]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Next steps

- a good data example
- capture uncertainty in the estimated parameter estimates for the bias-formula-based and hybrid methods for the V case
- for a binary outcome, investigate when the two methods based on the additive model fails
- extend to make use of target population outcome data when available
- extend V-case methods to address the situation when the scientist is concerned about a specific possible effect modifier that was not measured in the trial
- use a simulation-based approach that allows a more flexible outcome model

References

- Cole, S. R., & Stuart, E. A. (2010). Generalizing evidence from randomized clinical trials to target populations: The ACTG 320 trial. American Journal of Epidemiology, 172(1), 107-15. doi:10.1093/aje/kwq084
- Kern, H. L., Stuart, E. A., Hill, J. L., & Green, D. P. (2016). Assessing methods for generalizing experimental impact estimates to target populations. Journal of Research on Educational Effectiveness, 9(1), 103-127. doi:10.1080/19345747.2015.1060282