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Abstract: This paper aims to provide practitioners of causal mediation
analysis with a better understanding of estimation options. We take as in-
puts two familiar strategies (weighting and model-based prediction) and a
simple way of combining them (weighted models), and show how a range
of estimators can be generated, with different modeling requirements and
robustness properties. The primary goal is to help build intuitive appre-
ciation for robust estimation that is conducive to sound practice. We do
this by visualizing the target estimand and the estimation strategies. A
second goal is to provide a “menu” of estimators that practitioners can
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choose from for the estimation of marginal natural (in)direct effects. The
estimators generated from this exercise include some that coincide or are
similar to existing estimators and others that have not previously appeared
in the literature. We note several different ways to estimate the weights for
cross-world weighting based on three expressions of the weighting function,
including one that is novel; and show how to check the resulting covari-
ate and mediator balance. We use a random continuous weights bootstrap
to obtain confidence intervals, and also derive general asymptotic variance
formulas for the estimators. The estimators are illustrated using data from
an adolescent alcohol use prevention study. R-code is provided.

MSC2020 subject classifications: 62D20.
Keywords and phrases: Causal mediation analysis, robust estimation,
method visualization, natural (in)direct effects.
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1. Introduction

Causal mediation methodology is complex. There are different types of causal
contrasts: controlled direct effect, natural (in)direct effects [34, 30], interven-
tional (in)direct [2, 52] and other interventional effects [28], etc., each with their
own set of identification assumptions [27]. The literature on effect estimation
is vast, with a wide variety of estimation methods based on regression [e.g.,
50, 46, 25], weighting [e.g., 7, 8, 42, 12, 51], simulation [e.g., 16, 15, 53, 51], or
some combination of these strategies. Further complicating the picture, some
methods estimate marginal effects [15, 7, 8, 23, 51, 43] while others estimate
effects conditional on covariates [50, 46, 38, 44, 42]. Most of these methods are
parametric and require all the models used to be correctly specified. Some meth-
ods have built in robustness to model misspecification; these are often presented
in highly technical papers [e.g., 43, 60]. It can be difficult for researchers to find
their way through this literature and identify the estimation approach most
appropriate for their application.

To help ease this task, this paper explicates a range of estimation options for
causal mediation, focusing on options with some robustness properties. Rather
than reviewing the complex and constantly growing methodological literature
[see e.g., 13], we take a concrete approach of using as inputs two strategies famil-
iar to practitioners (weighting and regression) and a simple way of combining
them, and show how to generate a range of estimators with different modeling
requirements and robustness properties. The primary goal is to build intuitive
appreciation for robust estimation that is conducive to sound practice (without
requiring prior understanding of these methods). This will benefit from the use-
ful notion of pseudo samples, as each weighting procedure can be interpreted as
creating a certain meaningful pseudo sample. A secondary goal is to provide a
“menu” of estimators that practitioners can choose from (depending on which
modeling components they are comfortable with given the specific application).

The paper focuses on natural (in)direct effects. These decompose the total
causal effect and (when identified) provide insight about effect mechanisms. This
is a direct match to researchers’ common motivation for conducting mediation
analysis – a wish to understand what part of a causal effect is indirect (operating
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through a specific intermediate variable) and what part is direct (not through
that variable). The kind of reasoning used to build estimators here is not specific
to these effects, but can also be applied to other effect types in causal media-
tion analysis, which we will comment on at the end of the paper. (For readers
who require an orientation to different effect types, we refer to [28, 27] which
discuss interventional and natural effects, their relevance in practice, and their
identification; and to [35] which proposes separable effects.)

We consider marginal natural (in)direct effects. These effects, when defined
on the additive scale, correspond to the total effect being the average treatment
effect – a popular effect in causal inference. Adaptation to average effects on the
treated or on the controls is trivial. This paper does not address the estimation
of conditional effects as functions of covariates, which entails a different set of
estimation strategies that should be tackled separately.

As our construction of estimators is a bottom-up exercise, not all the es-
timators generated have appeared in the literature. We connect to work that
employs, or is related to, the strategies and estimators discussed in this paper,
and comment on the differences (some quite subtle) between some of these es-
timators. In addition to giving credit where credit is due, this aims to help the
reader be a more informed consumer of the related literature.

To make the paper accessible to a broad audience, all proofs (about robust-
ness properties, large-sample variance, and weight formulas) are placed in the
Technical Appendix (Supplement 1). To facilitate application, R-code to imple-
ment the estimators is provided in the R-package mediationClarity (available
at https://github.com/trangnguyen74/mediationClarity).

2. Preliminaries

2.1. Effect definitions

Consider the setting with a binary exposure A, followed in time by a mediator
variable M (which may be multivariate), followed in time by an outcome Y .
We define effects using the potential outcome framework [37, 6]. The target
estimands in this paper are marginal natural (in)direct effects, which decompose
the marginal total effect.

On the additive scale, the marginal total effect is formally TE := E[Y1]−E[Y0],
the difference between the population mean of Y1 (potential outcome if exposed
to the active treatment) and that of Y0 (potential outcome if exposed to the
comparison condition). Definition of natural (in)direct effects [30] additionally
employs a nested potential outcome type, YaMa′ (for a hypothetical condition
with exposure set to a and mediator set to its potential value under condition
a′) where a and a′ can be either 0 or 1. We assume that Ya = YaMa , thus
TE = E[Y1M1 ] − E[Y0M0 ]. Using a third potential outcome with mismatched
a and a′, either Y1M0 (exposure set to the active treatment but mediator set
to its potential value under control) or Y0M1 (the other way around), TE is
decomposed in two ways, giving rise to two pairs of natural (in)direct effects:

https://github.com/trangnguyen74/mediationClarity


Causal mediation from simple to robust 5

TE = E[Y1M1 ] − E[Y1M0 ]︸ ︷︷ ︸
NIE1

+ E[Y1M0 ] − E[Y0M0 ]︸ ︷︷ ︸
NDE0

,

TE = E[Y1M1 ] − E[Y0M1 ]︸ ︷︷ ︸
NDE1

+ E[Y0M1 ] − E[Y0M0 ]︸ ︷︷ ︸
NIE0

.

On multiplicative scales, marginal effects are ratios of marginal means or mar-
ginal odds of potential outcomes. For example, the marginal total effect is
E[Y1]/E[Y0] on the mean/risk ratio scale and E[Y1]/(1−E[Y1])

E[Y0]/(1−E[Y0]) on the odds ra-
tio scale; other effects are defined accordingly. On both scales, decomposition is
by product instead of sum, TE = NDE0 × NIE1 and TE = NIE0 × NDE1.

Marginal effects on the additive scale are also average effects. The marginal
additive TE is equal to the mean of the causal effect on the individual, Y1−Y0,
and thus is usually known as the average treatment effect in the non-mediation
literature. Marginal additive natural (in)direct effects can also be seen as av-
erages of effects on individuals. This interpretation does not apply to effects
defined on multiplicative scales.

Note that each TE decomposition mentioned here includes only one indirect
effect. In a situation where M is a set of more than one mediator (as in our data
example), this is the effect mediated by all the mediators combined. Alterna-
tively, one may be interested in path-specific effects involving different mediators
or subsets of mediators; that problem is outside the scope of this paper.

For conciseness, the rest of the paper addresses one of the two effect pairs:
the NDE0 and NIE1 (also called the pure direct effect and total indirect effect
[34]). The other effect pair mirrors this one in all content covered here.

2.2. Assumptions for effect identification
As the current focus is estimation, we simply assume that the effects of interest
are identified, noting that this is a matter for careful judgment in applications.
By “identified” we mean that the effects, which are functions of potential out-
comes, can be equated (under certain assumptions) to some functions of the
observed data distribution. It is the latter that we will attempt to estimate.
Below are the assumptions we make for (NDE0, NIE1) identification; for more
detailed explication, see [49], [16], [31] or our companion paper [27].

Consistency The first assumption is that there is consistency between ob-
served and potential outcomes or mediator values, and between potential out-
comes of several types. Specifically,

Y = Ya if A = a,

Y = Y1m if A = 1,M = m,

M = M0 if A = 0,
Ya = YaMa ,

Y1M0 = Y1m if A = 0,M = m,
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Fig 1. Unconfoundedness holds when no mediator-outcome confounders are influenced by
exposure and a set of observed pre-exposure covariates C captures all confounding.

C A M Y

for a being either 0 or 1, and m being any mediator value. Essentially we have
invoked this assumption in defining the effects above.

Unconfoundedness The second assumption may be called ignorability, ex-
changeability or unconfoundedness. This assumption requires that there is a
set of observed pre-exposure covariates C (where “pre-exposure” means either
preceding exposure in time or simply not being influenced by exposure) that
provides several conditional independence relationships. Specifically,

A ⊥⊥ Ya, Y1m,M0 | C,
M ⊥⊥ Y1m | C,A = 1,
M0 ⊥⊥ Y1m | C,

for a being either 0 or 1, and m being any value in the distribution of the
mediator given covariates C in the unexposed. The first two of the three elements
above fit with the usual notion of ignorability, where once we condition on
some variables the observed exposure (or mediator value) does not carry any
information about certain potential variables. The last element is different in
that it involves two potential variables (M0 and Y1m) in two different worlds
(thus commonly known as the cross-world independence assumption).1

In practice the usual way to deal with the unconfoundedness assumption is
to ask (i) whether there are any mediator-outcome confounders (observed or
not) that is influenced by exposure (these are often known as post-treatment
confounders);2 and if not, (ii) whether there is a set of pre-exposure covariates C
(all of which observed) that captures all exposure-mediator, exposure-outcome
and mediator-outcome confounders. If either the answer to (i) is yes or the
answer to (ii) is no, then the unconfoundedness assumption does not hold. Note
though that while we can use substantive knowledge to judge the plausibility of
these assumptions, these assumptions are not testable using data.

1This assumption is needed to identify natural effects (which are defined based on a hy-
pothetical situation where exposure is set to one condition but mediator is set to the value
under the other condition) but is not needed to identify interventional effects – see [27].

2A post-treatment confounder L results in violation of the cross-world independence as-
sumption M0 ⊥⊥ Y1m | C, due to a backdoor path connecting M0 and Y1m that is not blocked
by C. This path is M0 ← L0 ← UL → L1 → Y1m, where L0, L1 are potential values of L un-
der exposure and nonexposure, UL represents the unique causes of L that are not shared with
A,M, Y but are shared by L0, L1. For more thorough treatments of the no post-treatment
confounder (or cross-world independence) assumption, see [27, 49, 16, 31].
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Positivity Since identification involves conditioning on covariates C, what is
also required is that for all covariate levels there are positive chances of observing
relevant potential mediator/outcomes. This is the third assumption, termed
positivity. Specifically,

P(A = a | C) > 0,
P(M = m | C,A = 1) > 0,

for a being either 0 or 1, and m being any value in the distribution of the
mediator given covariates C in the unexposed. The first element implies posi-
tive chances of observing Y1, Y0,M0; both combined imply positive chances of
observing Y1m.

In more practical terms, the positivity assumption means that (i) the co-
variate range is the same in both the exposed and unexposed groups; and (ii)
within each subpopulation homogeneous in covariates C, the range of M in the
exposed group covers the range of M in the unexposed group.

Two quick notes before we proceed. First, the unconfoundedness (and accom-
panying positivity) assumptions above with a single covariate set C are a simple
version. Alternatively, different (yet overlapping) covariate sets could be used
to deconfound the exposure-mediator, exposure-outcome and mediator-outcome
relationships – see details in [27]. In that case, the estimation methods discussed
here need to be adapted, which is straightforward but involves complicated
expressions, and thus is not included to keep the paper manageable. Second,
the assumptions above point identify the effects of interest (described shortly).
There are cases where one may believe or be concerned that an assumption
does not hold. For example, the no unobserved mediator-outcome confounding
assumption and the cross-world independence assumption are often questioned.
In these cases, one strategy is to seek bounds for the effects based on the as-
sumptions one is willing to make (e.g., [24]), another is to conduct sensitivity
analyses on the assumption that is likely violated (e.g., [9, 10, 32, 11, 16, 43]).
We will return to this point at the end of the paper.

2.3. A heuristic view of identification that clarifies the estimation
task

Identification of the (NDE0,NIE1) pair amounts to identifying the means of the
three potential outcomes Y1, Y0 and Y1M0 . Under the assumptions above, the
identification results [30, 49, 16, 31] of these three means are

E[Y1] = EC{E[Y | C,A = 1]},
E[Y0] = EC{E[Y | C,A = 0]},
E[Y1M0 ] = EC(EM |C,A=0{E[Y | C,M,A = 1]}),

where the right-hand sides are functions of the observed data distribution.
To make these results more intuitive to readers who find them unfamiliar, we

offer a heuristic visualization in Figure 2. This figure has three columns. The
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Fig 2. Heuristic visualization of the identification result

left column shows the data that we have: the full sample, which is comprised
of the treated subsample and the control subsample. As we are interested in
the NDE0 and NIE1 that together contrast the means of Y1, Y0, Y1M0 , what we
would ideally like to have instead is shown in the middle column: three full
samples that all resemble the actual full sample pre-exposure, but are then set
to three conditions: the treated (1) condition, the control (0) condition, and the
cross-world condition (where exposure is set to 1 but mediator is set to M0);
this would allow us to average the outcome in the three samples to estimate the
three potential outcome means. Unfortunately, we do not observe these three full
samples. To remedy the situation, we invoke the assumptions above, which give
us the additional information in the right column: in such a treated (control)
full sample, the outcome distribution given C would be the same as that in
the observed treated (control) units; and in such a cross-world full sample, the
mediator distribution given C would be the same as that in the observed control
units, while the outcome distribution given (C,M) would be the same as that
in the observed treated units.

This sheds light on the estimation puzzle we need to solve. If we take the
obvious approach of estimating the three potential outcome means, the task of
estimating E[Y1] (or E[Y0]) would be a puzzle of obtaining the outcome mean
for a hypothetical full sample with the distribution of C from the actual full
sample and the outcome distribution given C from the actual treated (control)
units. The task of estimating E[Y1M0 ] would be another puzzle of obtaining the
outcome mean for a hypothetical sample with the distribution of C from the
actual full sample, the mediator distribution given C from the control units,
and the outcome distribution given (C,M) from the treated units. This is what
is conveyed in the identification results stated above.
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2.4. Preview of approaches and strategies for effect estimation

This paper makes use of two main tools: weighting and model-based prediction.
We will first (in Section 3) consider weighting, which can be used as the sole
puzzle-solving tool. Here we focus on conceptual clarity of the more complicated
cross-world weighting component (including a new simple view based on a novel
expression of the weight), methods for weight estimation, and balance checking.
Then (in Section 4) we bring in the model-based prediction tool and examine
pairs of estimators of potential outcome means, where each pair includes a
nonrobust estimator (requiring all models to be correctly specified) and a more
robust estimator (allowing some model misspecification). Here the robustness
is due to strategic incorporation of weighting. Section 5 addresses the specific
case of effects defined on the additive scale where there is an alternative view of
the puzzle, obtaining a pair of estimators of the natural direct effect. We do our
best throughout to reference work that employs or is related to the strategies
mentioned. Section 6 discusses considerations in choosing an estimator.

With respect to interval estimation (see Section 8), we use a bootstrap proce-
dure to obtain confidence intervals that applies to all the estimators discussed.
We also derive general formulas for the asymptotic variance of the estimators.3

2.5. Illustrative example

We illustrate the estimators using a synthetic dataset generated to mimic data
from The Prevention of Alcohol Use in Students (PAS) trial in the Netherlands.
In the real trial, middle schools were randomized to one of four conditions: stu-
dent intervention (promoting healthy attitudes and strengthening refusal skills),
parent intervention (encouraging parental rule setting), student and parent com-
bined intervention, and control condition (regular biology curriculum covering
effects of alcohol). The combined intervention was effective in reducing drinking
onset [22, 20] and drinking frequency [22], and [21] found that student atti-
tudes towards alcohol, perceived self-control in situations involving alcohol, and
student-reported parental rules about alcohol mediated the effect of the com-
bined intervention on onset of weekly drinking. Our analysis of synthetic data
considers the effect of the combined intervention relative to control on weekly
drinking at 22 months, with the same mediators measured at six months.

The PAS sample consists of students clustered in schools, and has missing
data on covariates, mediators and outcome. As our purpose is to illustrate a
range of estimators, not to draw inference on the trial, we ignore the clustering
for simplicity, complete the dataset with a single imputation, and use it as the
basis to create a synthetic dataset. The imputation and synthesization used
R-packages mice [47] and synthpop [29], and both are nonparametric (using
classification and regression trees). All estimation outputs are specific to the
synthetic dataset, and should not be interpreted as results of the original study.

3This is based on parametric specification of components of the model that need to be
estimated, e.g., P(A | C), P(A | C,M), E[Y | C,M,A = 1], etc. depending on the estimator.
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3. Weighting to create pseudo samples

Let us first examine one of the two tools we set out to use, that of weighting.
This tool can be used by itself to estimate the effects of interest: we would weight
data to create pseudo samples that stand in for the ideal treated, control and
cross-world full samples we wish we had (see Figure 2), average the outcome
in those pseudo samples to estimate the potential outcome means, and then
contrast those means to estimate the effects. Such an estimator is consistent
if the weights are consistently estimated. It tends to have large variance, and
may suffer from high influence of observations with large weights. An important
value of weighting, though, is that it can also be used in combination with
regression-based techniques (as we shall see in Section 4) for more precise and
robust estimation. It is therefore important to clarify how the weighting is done.

3.1. The pseudo treated and control samples

These pseudo samples are obtained by weighting treated units and control units
to mimic the full sample covariate distribution, using the well-known inverse
probability weights, ω1(C) = 1

P(A=1|C) for treated units and ω0(C) = 1
P(A=0|C)

for control units. These weights are commonly estimated via propensity score
[36] modeling. With such indirect estimation, it is common practice to check
covariate balance and possibly adjust the model to achieve good balance. We
will use probability models to estimate weights, and it is most familiar.

An alternative approach is to estimate the weights directly, finding weights
that reduce the difference between the full and pseudo samples’ covariate distri-
butions. For example, several methods (e.g., entropy balancing [5] and covariate-
balancing propensity score [17]) directly target balance on covariate moments
specified by the user, and another method [14] minimizes a measure of distance
between multivariate distributions called energy distance [41].

3.2. The pseudo cross-world sample

This pseudo sample is obtained by weighting treated units to mimic the C
distribution in the full sample and the M given C distribution in control units.
It stands in for the hypothetical full cross-world sample that we wish we had: in
addition to these two elements, it retains its original Y given (C,M) distribution
(which is that of treated units). Denote the weights that form the pseudo cross-
world sample out of treated units by ωx(C,M). These weights have several
equivalent expressions that point to several ways they may be estimated.

3.2.1. Three expressions (and views) of the cross-world weights

The first expression of ωx(C,M) builds on the inverse probability weights ω1(C),
which weight treated units to the full sample with respect to the covariate
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distribution, in a sense doing half of the job. Such weighting does not change
the mediator given covariates distribution (which is the distribution of M1 given
C). To morph this distribution to mimic the M0 given C distribution, we use
density ratio weighting (or probability ratio if the mediator is discrete) with the
weighting function P(M |C,A=0)

P(M |C,A=1) , where the numerator and denominator are the
densities (or probabilities) of the observed mediator value M conditional on C
and on A = 0 and A = 1, respectively. This weighting scheme was proposed by
Hong (2020) [7] [see also 8]. Thus we have

ωx(C,M) = 1
P(A = 1 | C)

P(M | C,A = 0)
P(M | C,A = 1) . (1)

A second expression is due to the fact that by Bayes’ rule the ratio of mediator
densities above is equal to the ratio of two odds of exposure, P(A=0|C,M)

P(A=1|C,M)

/
P(A=0|C)
P(A=1|C)

(noted by Zheng et al., 2012 [60]). The resulting expression,

ωx(C,M) = P(A = 0 | C,M)
P(A = 1 | C,M)

1
P(A = 0 | C) , (2)

(which appears in an identification result in [12]) is the product of two terms:
an odds weight4 and an inverse probability weight. This formula provides an-
other interpretation of the weighting: it could be thought of as first morphing
the treated subsample to mimic the joint distribution of (C,M) in the control
subsample (this is what odds weighting does), and then morphing the C distri-
bution (which now reflects the distribution under control) to mimic that in the
full sample (this is what inverse probability weighting does).

In addition, we found a novel third expression (see derivation in the Ap-
pendix). This expression is best viewed in its version for stabilized weights. The
ωx(C,M) weights in treated units have mean equal to 1

P(A=1) ; stabilized weights
are simply ωx(C,M) scaled down to mean 1 by multiplying with P(A = 1). The
third expression is

ωstabilized
x (C,M) =

P(C,M | A = 0) P(A=0)
P(A=0|C)

P(C,M | A = 1) , (3)

which could be seen as the ratio of two densities of (C,M): the denominator is
the density in the treated subsample, and the weighted density in the numerator
turns out to be the density in the pseudo control sample. That is, the weighting
morphs the treated subsample such that it mimics the joint (C,M) distribution
in the pseudo control sample. This makes sense, as the pseudo control sample has
the C distribution of the full sample and the M given C distribution of control
units – two of the three features desired for the pseudo cross-world sample.

4Side note: This odds weight component also appears as part of the weight formula in
Tchetgen Tchetgen et al.’s inverse odds ratio weighting method [42] for estimation of the
conditional natural direct effect. Both there and here, the role of weighting by this odds is
to construct a weighted outcome distribution that reflects the distribution of the cross-world
potential outcome given covariates.
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3.2.2. Estimation of the cross-world weights

The first two of the expressions for ωx(C,M) above can be used directly as
formulas for estimation purposes. In addition to the propensity score model, we
fit either two mediator density models, P(M | C,A = 0) and P(M | C,A = 1) (if
using the first formula), or a model for exposure given covariates and mediators,
P(A | C,M) (if using the second formula); and plug the estimated elements into
the formula. Between these two methods, the first one has the appeal that
the models are variationally independent,5 but its disadvantage is that density
estimation is generally a harder problem than mean estimation (and especially so
for a non-binary or multivariate mediator). The second method requires fitting
fewer models (only two) and they are conditional mean models.

With the third expression of ωx(C,M), rather than treating it as an estima-
tion formula (which would require estimating conditional densities of (C,M)),
we can use the insight it provides – to weight the treated subsample to mimic
the (C,M) distribution in the pseudo control sample – and note that this can
be achieved by odds weighting. This means stacking the treated subsample with
the pseudo control sample, fitting a model for A given C,M to the stacked data,
and computing ωx(C,M) as the model-predicted odds of being in the pseudo
control sample rather than the treated subsample. (This is just another instance
of the connection between density ratios and odds of group membership.) This
method also requires only two conditional mean models. Figure 3 visualizes
these three weights estimation methods.

For readers who wish to use direct weights estimation tools such as moments
balancing or distance minimizing (rather than relying on probability models), a
couple of notes. First, the third expression of ωx(C,M) provides a simple and
elegant way to use such tools: seek weights that morph the treated subsample to
mimic the pseudo control sample with respect to the joint (C,M) distribution.6
Second, while the second expression of ωx(C,M) suggests that direct weights
estimation can be used for two-step weighting (first mimicking the control sub-
sample’s (C,M) distribution, then mimicking the full sample’s C distribution),
we do not recommend this, as this zigzag weighting may result in unnecessary
loss of samples and suboptimal weights. 7

5This weights estimation method uses models for P(A | C), P(M | C,A = 1) and P(M |
C,A = 0), which correspond to a factorization of the likelihood. These model components
thus do not put constraints on one another.

6Direct weights estimation seeks to directly mimic a target distribution, thus requires data
reflecting that distribution. The pseudo control sample reflects the target (C,M) distribution.

7This weighting scheme is zigzag in the sense that the first step overshoots the target
C distribution, as the full sample C distribution is in between those in the two subsamples.
Therefore the first step may give very small weights to (or even drop) some observations (es-
pecially if the treated and control subsamples are dissimilar), which means those observations
are essentially lost to the second step.
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Fig 3. Different views of cross-world weighting via alternative expressions of the weight func-
tion

Fig 4. Desired balance when using weighting to estimate the NDE0, NIE1 pair: covariate
balance among all three pseudo samples and full sample, and covariate-and-mediator balance
between pseudo cross-world and control samples.
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3.3. Balance checking

With the three pseudo samples, the desired balance includes two components
(see Figure 4). The first component is covariate balance between the three pseudo
samples and the full sample as well as among the three pseudo samples. The
second component is the covariate-and-mediator balance between the pseudo
cross-world sample and the pseudo control sample.

This full balance is important when using weighting as the pure estimation
strategy, i.e., the effects are estimated by contrasting the outcome means from
the pseudo samples. For some of the other estimators in the next section, certain
elements of balance (which we will note) are crucial as they relate directly to
the estimator’s consistency, while other elements are in a sense of secondary
importance as they serve mainly to induce robustness.

4. Estimating potential outcome means: pairs of nonrobust and
more robust estimators

The weighting above gives us one solution to the puzzle described in Section 2.3.
We can simply average the outcomes in the pseudo samples and contrast the
averages to obtain estimates of the total and natural (in)direct effects. We call
this the pure weighting estimator. This estimator is consistent only if the three
weight functions are consistently estimated.

We now explore several other solutions to the puzzle, using our second tool,
model-based prediction, either alone or in combination with weighting. These
solutions are estimators of the means of Y0 and Y1 (which we refer to as regular
potential outcomes) and of the cross-world potential outcome, which are to be
combined to estimate marginal effects on either additive or multiplicative scale.

We present these potential outcome mean estimators in pairs. Each pair con-
sists of a simple estimator that does the minimum needed to solve the puzzle,
and a more complex estimator built on the simple one that is more robust as
it provides some protection against model misspecification. Our explanations of
robustness properties here strive for simple language; proofs for all estimators
(here and in the next sections) are provided in the Technical Appendix.

As the paper touches on many estimators, a labeling system is needed. We use
labels with two parts separated by “|”, where the front part signals what is being
estimated (e.g., “reg” and “crw” for regular and cross-world potential outcome
means), and the back part signals the estimation method. Within each pair, the
more robust estimator is distinguished from the nonrobust one by adding “MR”
or “R” to the back label (the difference between these will be clear shortly).
When referring to a pair, we use the base label (without MR or R).

4.1. Regular potential outcome means

We start with a single pair of estimators for the regular potential outcome
means. While these may be broadly familiar, we will take time in motivating
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Fig 5. A pair of regression-based estimators of regular potential outcome means, depicted as
targeting E[Y1]. * indicates that the model is required to satisfy the mean recovery condition.

them and clarifying ideas that will later apply in constructing estimators for the
cross-world potential outcome mean.

4.1.1. reg|Ypred: outcome prediction given covariates

The simple version (reg|Ypred)

Recall from Figure 2 that if we were to observe a full treated/control sample,
it would have the same outcome distribution given C as that in the actual
treated/control units (under our assumption of unconfoundedness given C).
This means we can learn this distribution from the treated/control subsample
and apply it to the full sample. We thus fit a model regressing Y on C in the
treated subsample, use this model to predict Y1 for every individual in the full
sample, and average the predicted values over the full sample to estimate E[Y1].
For E[Y0], we fit the model to the control subsample and use it to predict Y0.8

The two models here are models for E[Y |C,A = 1] and for E[Y |C,A = 0].
Below we often refer to them collectively as E[Y |C, a] (keeping a = 0, 1 im-
plicit); this is just an abbreviation as the key is that these are models that allow
predicting two different variables, Y1 and Y0. Instead of fitting the models sepa-
rately, we can also fit a joint model regressing Y on C,A. Separate model fitting
has the advantage that it allows tailoring to the subsamples while avoiding the
risk of (conscious or unconscious) fishing for a desired treatment effect estimate.

This simple estimator is nonrobust. If the outcome models are misspecified,
predictions may be poor, leading to estimation bias. The problem may be ex-
acerbated by extrapolation if the covariate distributions of the subsamples (to
which the models are fit) differ substantially from that of the full sample (on
which outcomes are predicted).

8A variant is to combine observed Y1 and Y0 values (in treated and control units, respec-
tively) with predicted Y1 and Y0 values (for control and treated units, respectively).
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The doubly robust version (reg|Ypred.R)

There is a class of estimators that are doubly robust. They combine outcome
models and inverse probability weights, and are consistent if one of these two
components (but not necessarily both) is correct. Many such estimators exist
[see 19, 33]. We consider one estimator [33, 54] based on a strategy that readily
extends to the later estimation tasks in the paper.

Like the simple estimator reg|Ypred, this robust estimator reg|Ypred.R relies
on predicting Y1 and Y0 for the full sample and averaging predicted values (Fig-
ure 5). However, there is a key difference between the two estimators and a mild
technical requirement imposed on the robust estimator. The key difference is
that the outcome models used for prediction are fit to the pseudo treated/control
samples instead of the subsamples, i.e., weighted regression models are used.9
The technical requirement is that the outcome models satisfy a condition we
label mean recovery: in the sample to which the model is fit (here a pseudo
sample), the average model-predicted outcome equals the average observed out-
come [33, equation 8]. Due to these two features combined, the estimator is
doubly robust. We offer some intuition about these two points.

First, there is a simple rationale for fitting models to pseudo samples. Gen-
erally we do not know the true model that generated the data, so all models we
use are just approximations of the true model. One way to improve the approxi-
mation (other than using flexible models to reduce misspecification) is to fit the
model to the same covariate space on which it will be used for prediction; this
is a guard against extrapolation. Compared to the treated/control subsamples,
the pseudo samples have covariate distributions that are (at best) the same as or
(at least) closer to that of the full sample. Fitting models to the pseudo samples
is thus an improvement over the simple prediction estimator.

Second, the technical mean recovery condition serves to make sure that even
if the predicted outcome values may be biased, they would be on average unbi-
ased (if the weights that form the pseudo samples are correct). This condition
is satisfied by generalized linear models with canonical link and an intercept
(e.g., the usual linear regression, logistic regression, Poisson regression), which
is the option we will use. Note that this is not the only choice. For example,
an estimating equations approach may accommodate other link functions while
satisfying this condition. Or if the outcome model is fit by machine learning,
this condition may be achieved using targeted maximum likelihood estimation
(TMLE) [48]. These topics are outside the scope of the current paper.

4.2. Cross-world potential outcome mean

Now we turn to the cross-world potential outcome. There are a range of strate-
gies for estimating its mean. This is because the task requires combining several

9Related to the nonrobust variant in footnote 5, the corresponding robust variant here
would predict Y1 for control units based on an outcome model fit to a weighted treated
subsample that mimics the control subsample (using odds weights P(A=0|C)

P(A=1|C) ), and predict Y0
for treated units based on an outcome model fit to a weighted control subsample that mimics
the treated subsample (using odds weights P(A=1|C)

P(A=0|C) ).
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Fig 6. Four pairs of estimators of the cross-world potential outcome mean E[Y1M0 ]. Outcome
models used for MR/R estimators (marked with *) are required to be mean-recovering.

pieces of information from the full sample and from the treated and control
conditions – recall that the cross-world sample in Figure 2 has the C distri-
bution of the full sample, the M given C distribution of the controls, and the
Y given C,M distribution of the treated – and there are different ways those
pieces could be obtained and combined. We present four pairs of nonrobust and
more robust estimators. The more robust estimators differ from their nonrobust
counterparts in that they fit certain models to relevant pseudo samples instead
of subsamples, and that outcome models used for them are required to satisfy
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the mean recovery condition mentioned above. We explain the estimators’ ro-
bustness properties and point out their nonrobustness if any. To aid explanation
and provide a clear view, a visual representation of these four estimator pairs is
provided in Figure 6. Also, Table 1 lists the steps for implementing them.

4.2.1. crw|psYpred: outcome prediction given covariates and mediators on
pseudo control sample

These estimators are anchored on the pseudo control sample, where the mediator
is M0, and (if the weights are correct) the C distribution mimics that of the
full sample. This gives us two of the three required pieces of information. The
Y given C,M distribution, however, is off because it is that of control units.
To complete the puzzle, we replace the observed outcome with predicted Y1M0

given the units’ (C,M) values, where the prediction is based on a model for
E[Y | C,M,A = 1]. We then average these predicted Y1M0 values over the
pseudo control sample to estimate E[Y1M0 ]. (These are the only estimators in
the paper that average predicted outcome over a pseudo sample, hence the ‘ps’
in the label.)

With the nonrobust estimator in this pair, the E[Y | C,M,A = 1] model is
estimated by regressing Y on (C,M) in the treated subsample. For this estimator
to be consistent, the control weights ω0(C) have to be consistently estimated
and this outcome model has to be correctly specified.

Relating to the literature, this nonrobust estimator constitutes part of Van-
derWeele and Vansteelandt’s weighting-based estimator for the multiple me-
diator setting [51]. Albert [1] employs this strategy – using a model fit in one
exposure condition to predict the cross-world outcome on units in the other con-
dition and weighting those units to standardize the covariate distribution – but
for a general target population (a generalization of our current purpose). Also,
this strategy of predicting the cross-world outcome on a pseudo sample is one
of the methods used in the R-package medflex [38] as a first step in estimating
effects conditional on covariates.

The more robust estimator crw|psYpred.MR fits the outcome model (that sat-
isfies the mean recovery condition) to the pseudo cross-world sample instead of
the treated subsample. Like its nonrobust sibling, this estimator is not consistent
if the ω0(C) weights are not consistent. But if they are, then crw|psYpred.MR
is consistent if either the outcome model is correctly specified or the cross-world
weights ωx(C,M) are consistent. That is, crw|psYpred.MR has two chances to
be correct, while crw|psYpred has only one. Here we use the MR (more robust)
suffix (instead of simply R) to signal that although this estimator is more robust
than its nonrobust sibling, it depends on one estimation component (here the
control weights) being correct.

Because these two estimators average predicted outcome over the pseudo
control sample, they depend on the covariate distribution of the pseudo sample
mimicking the full sample well. Therefore, when using either of these estimators,
it is crucial to obtain good covariate balance between the pseudo control sample
and the full sample.
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While these two estimators rely on outcome prediction, they are also weighted
estimators (as predictions are averaged over weighted control units), and weighted
estimators may have large variance due to the variability of the estimated
weights. An alternative strategy is to find a way to predict Y1M0 on the full
sample instead of on the pseudo control sample. The next three pairs of estima-
tors do this in different ways.

4.2.2. crw|Ypred: outcome prediction given covariates

In the full sample, we cannot predict Y1M0 based on observed covariates and
mediators (because the observed M is a mixture of both M0 and M1). Instead,
this pair of estimators relies on Y1M0 prediction based on covariates only. To
do this, we need a model that informs of the mean of the cross-world potential
outcome given covariates, E[Y1M0 | C].

The trick employed by the simpler estimator in this pair is to weight the
treated subsample to mimic the control subsample with respect to the joint
distribution of (C,M) (using odds weights ox(C,M) = P(A=0|C,M)

P(A=1|C,M) , which can
be estimated based on a model for exposure given covariates and mediator).10
This weighted subsample (which we call a pseudo cross-world subsample) has
two of the three desired features of the ideal cross-world full sample: the M given
C distribution (like that in the controls) and the Y given (C,M) distribution
(like that in the treated). That means the Y given C distribution is like that in
the ideal cross-world full sample – the distribution of Y1M0 given C. We thus fit
to this pseudo subsample a model regressing outcome on covariates to estimate
E[Y1M0 | C]. (To simplify language, we loosely call this model the E[Y1M0 | C]
model.) Based on this model, we predict Y1M0 in the full sample and average
the predicted values to estimate E[Y1M0 ]. This estimator is nonrobust. For it to
be consistent, the weights ox(C,M) have to be consistently estimated and the
outcome model has to be correctly specified.

The more robust estimator crw|Ypred.MR, on the other hand, fits an outcome
given covariates model (that satisfies the mean recovery condition) to the pseudo
cross-world sample (instead of the cross-world subsample above). This estimator
has two chances to be correct: (1) if the weights ωx(C,M) are consistently
estimated, crw|Ypred.MR is consistent even if the outcome model is misspecified;
and (2) if the outcome model is correctly specified and only the mediator-related
part of ωx(C,M) is correct, crw|Ypred.MR is consistent.

To clarify the second case, the mediator-related part of the weights is the
term that controls the mediator distribution in the pseudo cross-world sample.
It varies by the weights estimation method: in the first and second methods it is
the P(M |C,A=0)

P(M |C,A=1) and P(A=0|C,M)
P(A=1|C,M) terms, respectively; in the third method it is the

odds of being in the pseudo control sample rather than the treated subsample
(where the pseudo control sample may be incorrectly weighted). When only

10An alternative is to mimic the M given C distribution using density ratio weights
P(M|C,A=0)
P(M|C,A=1) ; we do not recommend this because there is no simple way to check balance
on conditional distributions.
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the mediator-related part of the weights is correct, the weighting gets the C
distribution wrong but gets the M given C distribution right, and it is the latter
that ensures that the treated units’ Y given C distribution is appropriately
morphed to resemble the target Y1M0 given C distribution. As the outcome
regression model conditions on C, it is (if correctly specified) not affected by
the incorrectly weighted C distribution.

Intuitively, both of these estimators rely completely on the weighting to ob-
tain data that reflect the distribution of Y1M0 given C (via getting the M given
C distribution right). It is thus crucial to achieve good balance, specifically
(C,M) balance between the pseudo cross-world subsample and the control sub-
sample (for the nonrobust estimator) or between the pseudo cross-world sample
and the pseudo control subsample11 (for the more robust estimator).

4.2.3. crw|Y2pred: outcome prediction based on double model fit

These estimators also rely on predicting Y1M0 in the full sample based on a
model that estimates E[Y1M0 | C]. Here this model is estimated in two steps:
first fitting a E[Y | C,M,A = 1] model and using it to predict Y1M0 in control
units, then regressing the predicted Y1M0 on covariates to estimate E[Y1M0 | C].
We loosely refer to these two regression models with one building directly on
the other as a double outcome model fit (or iterated regression).12

With the nonrobust estimator crw|Y2pred, these two models are fit to the
treated and control subsamples, respectively. For this estimator to be consistent,
both models have to be correctly specified.

The robust estimator crw|Y2pred.R fits the outcome models to the pseudo
cross-world and pseudo control samples instead; and both models are required
to satisfy the mean recovery condition. This estimator has three chances to be
consistent: (1) both of the outcome models are correctly specified; (2) both the
ωx(C,M) and ω0(C) weights (that form pseudo cross-world and pseudo control
samples) are consistently estimated; or (3) the ωx(C,M) weights are consistently
estimated and the E[Y | C,A = 1,M ] model is correctly specified. Notice that we
call crw|Y2pred.R robust (rather than more robust) to signal that this estimator
does not depend on any specific estimation component being correct.

A technical note: crw|Y2pred.R is a multi-step estimator based on the non-
parametric influence function. As such, it has similar robustness properties to
Tchetgen Tchetgen and Shpitser’s estimator which solves the nonparametric in-
fluence function estimating equation [43]. The appeal of crw|Y2pred.R is that
the steps are intuitively meaningful without requiring knowledge of influence
function theory.

11Strictly speaking, the construction of the pseudo control subsample is not required to
obtain a crw|Ypred estimate of E[Y1M0 ] (see Figure 6). However, this is likely not additional
work because the pseudo control subsample is already constructed for estimating E[Y0].

12This iterated regression procedure is a straightforward implementation, by regression, of
the double expectation in the identification result.
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Table 1

Implementation steps of estimators of potential outcome means in Sections 3, 4 and 5.1.
nonR, MR and R stands for nonrobust, more robust and robust, respectively.

Purely weighting: nonR estimator
1. Estimate ω1(C), ω0(C) and ωx(C,M) weights
2. Average the observed outcome in the pseudo control, pseudo treated and pseudo cross-world

samples

reg|Ypred pair: nonR and R estimators
1. For the R estimator, estimate ω1(C) and ω0(C) weights
2. Model Y given C in the treated and control subsamples (nonR) or pseudo treated and control

samples* (R)
3. Based on these models, predict Y1 and Y0 given C in full sample
4. Average predicted Y1 and Y0 in full sample

crw|psYpred pair: nonR and MR estimators
1. Estimate ω0(C) weights
2. For the MR estimator, also estimate ωx(C,M) weights
3. Model Y given C,M in the treated subsample (nonR) or pseudo cross-world sample* (MR)
4. Based on model, predict Y1M0 given C,M in control units
5. Average predicted Y1M0 in pseudo control sample

crw|Ypred pair: nonR and MR estimators
1. Estimate ox(C,M) weights (nonR) or ωx(C,M) weights (MR)
2. Model Y given C in the pseudo cross-world subsample (nonR) or pseudo cross-world sample*

(MR)
3. Based on model, predict Y1M0 given C in full sample
4. Average predicted Y1M0 in full sample

crw|MsimYpred pair: nonR and MR estimators
1. For the MR estimator, estimate ω0(C) and ωx(C,M) weights
2. Model the density of M given C in the control subsample (nonR) or pseudo control sample (MR)
3. Model Y given C,M in the treated subsample (nonR) or pseudo cross-world sample* (MR)
4. Do many times in full sample:

i. Based on first model, simulate M0 given C

ii. Based on second model, predict Y1M0 given the combination of C and predicted M0

5. Average all predicted Y1M0 values in full sample

crw|Y2pred pair: nonR and R estimators
1. For the R estimator, estimate ω0(C) and ωx(C,M) weights
2. Model Y given C,M in the treated subsample (nonR) or pseudo cross-world sample* (R)
3. Based on model, predict Y1M0 given C,M in control units
4. Model predicted Y1M0 given C in the control subsample (nonR) or pseudo control sample* (R)
5. Based on model, predict Y1M0 given C in full sample
6. Average predicted Y1M0 in full sample

NDE|YpredEpred pair: nonR and R estimators
1. For the R estimator, estimate ω0(C) and ωx(C,M) weights
2. Model Y given C,M in the treated subsample (nonR) or pseudo cross-world sample* (R)
3. Based on model, predict Y1M0 given C,M in control units, and

compute proxy of the individual NDE0 as predicted Y1M0 minus Y

4. Model the NDE0 proxy given C in the control subsample (nonR) or pseudo control sample* (R)
5. Based on model, predict NDE0 given C in full sample
6. Average predicted NDE0 in full sample

* This regression model for the MR/R estimator is required to satisfy the mean recovery condition.
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4.2.4. crw|MsimYpred: mediator simulation and outcome prediction

These estimators involve fitting models for the conditional mediator density
P(M | C,A = 0) and the conditional outcome mean E[Y | C,M,A = 1]. Having
learned these models, we put the observed mediator and outcome aside. For all
units in the full sample, we simulate M0 based on the first model, and with the
simulated M0 and observed C, predict Y1M0 based on the second model. 13

We do this multiple times, resulting in multiple sets of predicted Y1M0 values,
and average these predicted values to estimate E[Y1M0 ].14

With the nonrobust estimator in this pair, the mediator model is fit to the
control subsample and the outcome model to the treated subsample. For this
estimator to be consistent, both models have to be correctly specified. This
mediator simulation strategy is used in Imai et al.’s natural (in)direct effects
estimation method [15], implemented in the R package mediation [45]. This
other estimator differs from crw|MsimYpred in that it uses this strategy for all
potential outcome means (not only the cross-world one) therefore relies on more
models. Also, the implementation in the package uses models for P(M | C,A)
and E[Y | C,A,M ] fit to the full sample rather than exposure-specific models.

The more robust crw|MsimYpred.MR instead fits the mediator model to the
pseudo control sample and the outcome model to the pseudo cross-world sam-
ple, with the outcome model safisfying the mean recovery condition. Like its
nonrobust sibling, this estimator is inconsistent if the mediator density is mis-
specified. Assuming correct specification of this model, this estimator has two
chances to be correct: either the ωx(C,M) weights are consistently estimated or
the outcome model is correctly specified.15

Relating to the existing literature, a specific version of crw|MsimYpred.MR
where the cross-world weights are estimated based on mediator density models
is an implementation of the estimator in section 5 in [43]. The estimator in
[43] integrates the conditional outcome mean function E[Y | C,M,A = 1] over
the conditional mediator density P(M | C,A = 0); the simulation-prediction-
averaging procedure here is a numerical evaluation of that integral.

An interesting point: with both estimators being inconsistent if the mediator
density model is misspecified, is anything gained by fitting that model to the
pseudo control sample instead of the control subsample? Yes, what is gained is a
partial correction in the sense that with a wrong model, the density fitted with
correct weights is closer (in KL-divergence, see section B.4.2.4 of the Technical
Appendix) to the true density than the density fitted without weights is.

These two estimators’ dependence on correct specification of the mediator
density model is an important drawback, as density estimation is a harder prob-

13A variant is to use the observed mediator in control units and only simulate M0 for
treated units.

14This is an implementation of the double expectation in the identification result where
the outer expectation is evaluated by numerical integration.

15In the more robust version of the variant mentioned two foot notes ago, the mediator
model is fit to a weighted control subsample that mimics the treated subsample’s C distribu-
tion – using odds weights P(A=1|C)

P(A=0|C) .
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lem than mean estimation, an issue raised in [1]. (Estimators that do not involve
simulating M0, or more generally, integrating over an estimated conditional den-
sity of M0, avoid this problem.) For example, with a continuous variable, if the
conditional mean is of interest, a common model choice is the linear model,
which assumes a functional form for the mean but makes no other assumption.
If the conditional density is of interest, one might still use the linear model but
has to make additional distributional assumptions (e.g., the error is normally
distributed or follows some other distribution) which are likely incorrect. In the
special case with a single binary mediator, the distribution is fully described by
the probability so the model reduces to a conditional mean model.

In a setting with a multivariate mediator (like in our data example), we
need to model the joint distribution of the mediators given covariates in control
units. To do this, we factor the joint into conditional densities/probabilities. Let
M = (Ma,M b,M c) where Ma,M b,M c are three mediators.

P(M | C,A = 0) =
P(Ma | C,A = 0)P(M b | C,A = 0,Ma) P(M c | C,A = 0,Ma,M b).

In the control subsample (or the pseudo control sample if using the more robust
version), we fit three models for the three mediators. All three models condition
on C, the second model conditions additionally on Ma, and the third model
conditions additionally on both Ma and M b. The order of variables in the
factorization can be chosen for modeling convenience (see our data application
for an example). Simulation follows the order of the fitted models.

As a mini recap, the four pairs of estimators of E[Y1M0 ] above represent dif-
ferent solutions to the puzzle of finding the outcome mean in a target condition
where the C distribution is the same as that in the full sample, the M given
C distribution is the same as that in the controls, and the Y given (C,M) dis-
tribution is the same as that in the treated. In each pair, the second estimator
is more robust than the first as it does not require that all estimation com-
ponents are correct. Among the four more robust estimators, crw|Y2pred.R is
the most robust as it does not require any specific estimation component to be
correctly specified/consistent; in contrast crw|psYpred.MR and crw|Ypred.MR
are not robust to inconsistent weights, and crw|MsimYpred.MR is not robust to
misspecification of the conditional mediator density model.

4.3. A weighting-centric view of the more robust estimators

The presentation of estimators in pairs above shows that each MR/R estimator
is an improvement over a simpler regression-based estimator by incorporating
weighting. Several of these estimators can also be seen as a direct improvement
on the pure weighting estimator by incorporating regression-based prediction.
This is easily seen from the visualization in Figures 5 and 6.

Consider reg|Ypred.R as an estimator of E[Y1]. As shown in Figure 5, it is
a modification of the pure weighting estimator. The latter solves the puzzle by
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obtaining the pseudo treated sample and stops there. reg|Ypred.R goes one step
further: using regression-based prediction to correct for discrepancy in outcome
mean due to the remaining difference between this pseudo treated sample and
the target covariate distribution (contained in the full sample).

crw|Ypred.MR can also be seen as a direct improvement upon the pure
weighting estimator of E[Y1M0 ]. The pure weighting estimator solves the puzzle
by obtaining the pseudo cross-world sample. crw|Ypred.MR takes an additional
step to correct for the remaining difference between the pseudo cross-world sam-
ple and the target covariate distribution (but not the target conditional mediator
distribution).

crw|psYpred.MR also starts with creating the pseudo cross-world sample like
the pure weighting estimator. The additional regression-based prediction on
the pseudo control sample adjusts for any difference between the pseudo cross-
world sample and pseudo control sample. This effectively is a correction for
the remaining difference between the pseudo cross-world sample and the target
conditional mediator distribution (contained in control units).

Like the two previous estimators, crw|Y2pred.R also starts with creating
the pseudo cross-world sample by weighting. Then it goes two additional steps
to correct for the remaining differences from the target conditional mediator
distribution and the target covariate distribution.

4.4. Combining reg| and crw| estimators to estimate the effects

The marginal natural (in)direct effects are estimated by contrasting the esti-
mated means of the three potential outcomes, using the difference or ratio def-
inition of choice. We combine each of the four nonrobust regression-based crw|
estimators with the nonrobust reg|Ypred, and each of the more robust crw| esti-
mators with reg|Ypred.R. We label the resulting effect estimators using simple
labels that mostly reflect the crw| method, e.g., Y2pred.R is the combination of
crw|Y2pred.R and reg|Ypred.R.

For two crw| strategies (crw|psYpred and crw|MsimYpred, both nonrobust
and more robust versions), we also form a second combination with a modified
reg| strategy. Note that crw|psYpred is anchored on the pseudo control sample.
The first psYpred combination is with reg|Ypred, which is anchored on the full
sample. In the second combination, however, the reg| part is also anchored on
the pseudo control sample: E[Y1] and E[Y0] are estimated by averaging predicted
Y1 values and observed Y0 values on the pseudo control sample. The other case is
crw|MsimYpred. The first combination uses reg|Ypred for both E[Y1] and E[Y0];
the second combination uses mediator simulation to estimate both E[Y1M0 ] and
E[Y0] (here seen as E[Y0M0 ]), and uses reg|Ypred to estimate E[Y1] only.

These estimators of natural (in)direct effects inherit the properties of the reg|
and crw| estimators they combine. Table 2 summarizes the estimation compo-
nents involved in, and the (non)robustness properties of, each of these effect
estimators. It also covers the pure weighting estimator and a pair of estimators
that will be considered in section 5.
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Table 2. Robustness and nonrobustness properties of estimators from Sections 3, 4 and 5

Estimator
label

Estimator
summary

Estimation components used
to estimate E[Y1M0 ] (or NDE0)

Estimation components used
to estimate E[Y1],E[Y0] (or TE)

Combination of components that need to be
correct for the estimator to be consistent

Components
not allowed to
be inconsistent

wtd pure weighting wts: ωx(C,M) wts: ω1(C), ω0(C) all components correct all

psYpred1 crw|psYpred,
reg|Ypred wts: ω0(C)

omod: E[Y | C,M,A = 1]

omods: E[Y | C,A = a] for a = 1, 0 all components correct all

psYpred2 Y1M0 ,Y1|psYpred,
Y0|wtd

wts: ω0(C)
omod: E[Y | C,A = 1] all components correct all

Ypred crw|Ypred,
reg|Ypred

wts: ox(C,M)
omod: E[Y1M0 | C] omods: E[Y | C,A = a] for a = 1, 0 all components correct all

MsimYpred1 crw|MsimYpred,
reg|Ypred mmod: P(M | C,A = 0)

omod: E[Y | C,M,A = 1]

omods: E[Y | C,A = a] for a = 1, 0 all components correct all

MsimYpred2 Y1M0 ,Y0|MsimYpred,
Y1|Ypred

mmod: P(M | C,A = 0)
omod: E[Y | C,M,A = 0], E[Y | C,A = 1] all components correct all

Y2pred crw|Y2pred,
reg|Ypred omods: E[Y | C,M,A = 1],E[Y1M0 | C] omods: E[Y | C,A = a] for a = 1, 0 all components correct all

NDEpred* NDE|YpredEpred,
TE|Ypred

omod: E[Y | C,M,A = 1]
emod: E[NDE0 | C] omods: E[Y | C,A = a] for a = 1, 0 all components correct all

psYpred1.MR crw|psYpred.MR,
reg|Ypred.R wts: ω0(C), ωx(C,M)

omod: E[Y | C,M,A = 1]

wts: ω1(C), ω0(C)
omods: E[Y | C,A = a] for a = 1, 0 •ω0(C) correct, and

•either ω1(C) or E[Y | C,A = 1] correct, and
•either ωx(C,M) or E[Y | C,M,A = 1] correct

ω0(C)

psYpred2.MR Y1M0 ,Y1|psYpred.MR,
Y0|Ypred.R

wts: ω1(C), ω0(C)
omod: E[Y | C,A = 1]

Ypred.MR crw|Ypred.MR,
reg|Ypred.R

wts: ωx(C,M)
omod: E[Y1M0 | C]

wts: ω1(C), ω0(C)
omods: E[Y | C,A = a] for a = 1, 0

•either ω1(C) or E[Y | C,A = 1] correct, and
•either ω0(C) or E[Y | C,A = 0] correct, and
•either ωx(C,M) correct, or
the M -related part of ωx(C,M) and E[Y1M0 |C] correct

the
M -related part
of ωx(C,M)

MsimYpred1.MR crw|MsimYpred.MR,
reg|Ypred.R wts: ωx(C,M), ω0(C)

mmod: P(M | C,A = 0)
omod: E[Y | C,M,A = 1]

wts: ω1(C), ω0(C)
omods: E[Y | C,A = a] for a = 1, 0

•either ω1(C) or E[Y | C,A = 1] correct, and
•either ω0(C) or E[Y | C,A = 0] correct, and
•either ωx(C,M) or E[Y | C,M,A = 1] correct, and
•P(M | C,A = 0) correct P(M | C,A = 0)

MsimYpred2.MR Y1M0 ,Y0|MsimYpred.MR,
Y1|Ypred.R

wts: ω1(C), ω0(C)
mmod: P(M | C,A = 0)
omods: E[Y | C,A = 1], E[Y | C,M,A = 0]

•either ω1(C) or E[Y | C,A = 1] correct, and
•either ω0(C) or E[Y | C,M,A = 0] correct, and
•either ωx(C,M) or E[Y | C,M,A = 1] correct, and
•P(M | C,A = 0) correct

Y2pred.R crw|Y2pred.R,
reg|Ypred.R

wts: ωx(C,M), ω0(C)
omods: E[Y | C,M,A = 1],E[Y1M0 | C]

wts: ω1(C), ω0(C)
omods: E[Y | C,A = a] for a = 1, 0

•either ω1(C) or E[Y | C,A = 1] correct, and
•either ω0(C) correct, or
both E[Y | C,A = 0] and E[Y1M0 | C] correct, and
•either ωx(C,M) or E[Y | C,M,A = 1] correct

NONE

NDEpred.R* NDE|YpredEpred.R,
TE|Ypred.R

wts: ωx(C,M), ω0(C)
omod: E[Y | C,M,A = 1]
emod: E[NDE0 | C]

wts: ω1(C), ω0(C)
omods: E[Y | C,A = a] for a = 1, 0

•either ω1(C) or E[Y | C,A = 1] correct, and
•either ω0(C) correct, or
both E[Y | C,A = 0] and E[NDE0 | C] correct, and
•either ωx(C,M) or E[Y | C,M,A = 1] correct

NONE

Notes: “wts” = weights. “omod” = outcome mean model. “mmod” = mediator density model. “emod” = effect model. * = only for additive effects.
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4.5. A quick note on model compatibility

This section is included for the more technically inclined readers and might
not be of general interest. In response to helpful comments from the referees,
we explored the topic of model compatibility or lack thereof for the estimators
covered in this paper. Generally it is undesirable to use incompatible modeling
components, because then at least one component in the conflict is mis-specified,
regardless of what the actual distribution is. The specific concern here is whether
an estimator’s use of variationally dependent modeling components means the
estimator has a model incompatibility issue.

Interestingly, we find that practically one needs not worry about model in-
compatibility for these estimators. Let us consider three relevant cases of vari-
ationally dependent models: (i) combination of two conditional outcome mean
models E[Y | C,A = 1] and E[Y | C,M,A = 1]; (ii) combination of two con-
ditional exposure models P(A | C) and P(A | C,M); and (iii) combination of
the last two models with the mediator density model P(M | C,A = 0). In cases
(i) and (ii), although the models are variationally dependent, as long as their
specification does not restrict the range of the conditional means/probabilities,
they are compatible. To make this concrete, an example of restriction-induced
incompatibility is that for a certain value c of C, one specify P(A | C = c) = .2
but specify P(A | C = c,M) ∈ (.4, .7); these specifications are incompatible
because there exists no density P(M | C = c) that satisfies P(A | C = c) =
EM |C=c[P(A | C = c,M ]. It is hard to think of a case where one would specify
such weirdly constrained models, though, so this is not really a practical concern.
We thus exclude this kind of conflicting specification from consideration.

Case (iii), the combination of the two conditional exposure models with a
model for P(M | C,A = 0), is only present in a version of MsimYpred.MR that
estimates the cross-world weights ωx(C,M) using the second formula. (The other
choice for MsimYpred.MR is to estimate ωx(C,M) using the first formula based
on mediator densities, where model components are variationally independent
so there is no incompatibility.) The case of combining P(M | C,A = 0) for
mediator simulation with P(A | C) and P(A | C,M) for ωx(C,M) estimation is
an interesting case where it turns out that there is also no model incompatibility.
Here the explicit specification of P(A | C) and P(A | C,M) implies an implicit
specification of the ratio P(M |C,A=0)

P(M |C,A=1) (as this is equal to odds(A=1|C)
odds(A=1|C,M) ). This

implicit specification combined with the explicit specification of P(M | C,A = 0)
implies an implicit specification of P(M | C,A = 1). Since we do not explicitly
model P(M | C,A = 1), there is no model incompatibility. This estimator
essentially “escapes” model incompatibility by simulating the mediator only for
the cross-world condition, thus relying on estimating the mediator density under
one treatment only.

We note that the assurance of model compatibility here does not tell us
whether the model is correct. Model compatibility is a quality of the estima-
tor; correct or mis-specification is a quality of the correspondence between the
model/estimator and the truth.
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At the request of the Editor, we now respond to a specific point raised by
a Referee in the second round review of this paper, which references model
compatibility but in our opinion is more about model mis-specification. The
point raised is: when modeling the two conditional outcome mean functions
E[Y | C,A = 1] and E[Y | C,M,A = 1] (case (i) above), this implies an im-
plicit specification of the mediator distribution, and the concern is that this im-
plicit specification may be mis-specified. The Referee comments that this would
not be an issue with the alternative choice of modeling E[Y | C,M,A = 1] and
P(M | C,A = 1). We respond in two parts, one technical and one practical. The
technical part is that the latter choice also has the same issue, as it implies an
implicit specification for E[Y | C,A = 1], and one may also be concerned that
this implicit specification is incorrect. In fact, since these three functions (two
outcome mean and one mediator density) are tied together by the relationship
E[Y | C,A = 1] = EM |C,A=1{E[Y | C,M,A = 1]}, explicit specification of any
two of the three implies an implicit specification of the third. Also, all specifica-
tions, explicit or implicit, may be incorrect. The practical part of our response
is that modeling choices should be guided by the specific estimation strategy.
For strategies that require an estimate of the function E[Y | C,A = 1] (as part
of estimating E[Y1]) and an estimate of the function E[Y | C,M,A = 1] (as
part of estimating E[Y1M0 ]), we choose to estimate both of these target func-
tions directly, so (roughly speaking) both have equal chance of being estimated
well. This also means they have equal chance of being estimated poorly. The
suggested alternative means estimating E[Y | C,A = 1] indirectly by estimat-
ing the other two functions and putting them together; this would double this
target function’s chance of being estimated poorly because either of the compo-
nent functions could be poorly estimated; and perhaps this chance is more than
doubled because density estimation is harder than mean estimation.

In making the point above, the Referee also comments that using logit models
for both E[Y | C,A = 1] and E[Y | C,M,A = 1] implies that P(M | C,A = 1) is
a bridge distribution [57, 58]. This is not the case, though, because the models
bridged by a bridge distribution are fundamentally different from our outcome
models. We explain this in section D of the Technical Appendix.

5. If targeting effects on the additive scale: marginal effect as the
mean of individual specific effects

If the marginal effects being targeted are defined on the additive scale, there
is an alternative view of the puzzle, where what we wish we had is a single
full sample in which all potential outcomes are simultaneously observed, which
means for each individual the effects are observed. Then the individual TE,
NDE0, NIE1, etc. are variables that could simply be averaged to estimate the
average (which are also the marginal additive) effects. While these effect vari-
ables are not observed (this is the fundamental problem of causal inference),
this view suggests we might learn an average effect if we have a good proxy for
the individual effect. It turns out that this works for natural direct effects.
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5.1. NDE|YpredEpred: effect prediction based on a proxy model

The key to this method is to choose a proxy for the individual effect that has
the same mean given covariates as the effect itself. Consider the individual
NDE0 = Y1M0 − Y0. For control units, we observe Y0 but not Y1M0 . The idea is
to replace the unobserved Y1M0 with its predicted value based on an appropriate
model.

This leads to an estimator pair that is a slight modification of crw|Y2pred.
Recall that crw|Y2pred involves a double model fit where the second model
regresses predicted Y1M0 values (in control units) on covariates. The modification
is that to estimate NDE0, that second model instead regresses the difference
between predicted Y1M0 and observed Y0 (a proxy for the individual NDE0)
on covariates. This model, which we loosely call the E[NDE0 | C] model, is
then used to predict NDE0 for all units in the full sample, and these predicted
individual effects are averaged to estimate the average NDE0.

Like the crw|Y2pred pair, the NDE|YpredEpred pair includes a nonrobust
and a robust estimator. For the nonrobust one, the E[Y | C,M,A = 1] and
E[NDE0 | C] models are fit to the treated and control subsamples, respectively.
For the robust estimator NDE|YpredEpred.R, these models (which now are
required to satisfy the mean recovery condition) are fit to the pseudo cross-world
and pseudo control samples instead. This robust estimator has three chances to
be correct: (i) if both the outcome and effect models are correctly specified; or
(ii) if the ω0(C) and ωx(C,M) weights that form the two pseudo samples are
consistent; or (iii) if the ωx(C,M) weights and the outcome model are consistent.

An aside: Instead of using the observed outcome in the construction of the
proxy for NDE0 in control units, a variant replaces it with a predicted value of
this outcome based on a E[Y | C,M,A = 0] model. The robust version of this
variant (where all models are fit to relevant pseudo samples) is closely related
to Zheng and van der Laan’s TMLE estimator [60]. This alternative estimator
also has three chances to be correct under similar conditions to those listed
above, except that condition (i) additionally requires correct specification of the
E[Y | C,M,A = 0] model.

Note that the current strategy only works for direct effects, as no similar
proxy for the individual NIE1 = Y1 − Y1M0 is available. To estimate the indi-
rect effect, one can subtract an NDE|YpredEpred estimator off of a total effect
estimate. We obtain the latter using reg|Ypred estimators.

6. How to choose an estimator

In addition to the primary goal of building intuition for (more) robust estima-
tion, a secondary goal of this paper is to provide a menu of estimation options
for the specific estimands considered. Table 2 summarizes the estimators of
marginal natural (in)direct effects discussed so far, with nonrobust estimators
in the top panel and more robust estimators in the bottom panel. Columns 3
and 4 of this table list the components involved in each estimator, under the
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groupings of outcome models (omod), effect models (emod), mediator models
(mmod) and weights (wts). Column 5 lists what is required of these components
for the estimator to be consistent. For the (more) robust estimators, each bullet
in this column is one requirement, and any bullet of the either-or form indicates
a robustness property, while any bullet not in either-or form is a nonrobust
component that needs to be consistent for the estimator to be consistent. The
nonrobust component is also pointed out specifically in column 6.

Given this menu of estimators, which one should be used for a particular
application? We take the pragmatic viewpoint that the choice of methods should
partly depend on the user’s level of comfort with the different types of methods,
because implementation is more error prone if a method is more complex and
not well understood by the user. Therefore we do not intend to propose or
advocate for a single method but to lay out a range of potential choices. We
offer some considerations below.

As the nonrobust estimators are simpler, one approach is to pick one of those
estimators. Among the nonrobust options we do not recomend the weighting-
based estimators, as they are inefficient. Otherwise, we recommend considering
the set of estimation components (weights, mediator density and outcome/effect
mean models) required by each estimator and deciding which set is most feasible
to implement well. The disadvantage of the simpler estimators, of course, is the
lack of robustness to model mis-specification. Another approach is to consider
the more robust estimators, looking at components that must be correctly spec-
ified as a way to rule out estimators that depend on hard-to-model components.

Again, we note that density estimation is generally more challenging than
mean estimation, and the difficulty of the task depends on the number and
types of mediators. It is easier for certain types of variables (e.g., binary vari-
ables) than others (e.g., continuous variables). When there are multiple medi-
ators, there are multiple models to fit and more chances to mis-specify them.
With multiple mediators, we need to choose an order of factorization for the
mediators, and therefore may prefer an order that makes models slightly easier
or more convenient to specify (see our data example). We might want to con-
sider alternatives to density estimation where possible, e.g., using the second
formula of the cross-world weight rather than the first formula. When using the
MsimYpred estimators, we should keep in mind that these methods depend on
a correct specification of the P(M | C,A = 0) model.

Several estimators depend on certain weights being correct, including the
nonrobust weighting-based estimators, as well as the more robust estimators
psYpred.MR (requiring correct control weights) and Ypred.MR (requiring that
the M -related component of the cross-world weight is correct). While correct
specification cannot be determined, balance checking is a useful guard against
severe misspecification. If certain weights do not achieve excellent balance, it is
advisable not to use the estimators whose validity hangs on those weights.

Lastly, on the menu there are two fully robust estimators, Y2pred.R and
NDEpred.R, which do not depend on any specific modeling component being
correct. Note that for each of these, we still need enough of the estimation
components to be correct.
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7. A comment on a common practice

Above we have shown how simple estimation strategies can be made more ro-
bust. Here we comment on a common practice in applied research that looks
similar to robust estimation to point out that it should not be seen as such, but
should simply be seen as a method to improve precision.

For simplicity, first consider the non-mediation setting where the estimand is
the average treatment effect, E[Y1]−E[Y0]. Here this common practice involves
first balancing covariates to justify comparing outcomes between the two groups,
and then fitting a simple model regressing outcome on exposure and covariates,
usually in the form of main effects. Seen through our pseudo samples lens,
when covariate balancing is done by propensity score weighting, we achieve the
pseudo treated and pseudo control samples, and the regression model is fit to the
combination of these two pseudo samples. With the combination of weighting
and an outcome model, this type of analysis looks similar to a doubly robust
method, and we have heard practitioners describe it as doubly robust. However,
the regression model is likely too simple to have a chance at being correct.
As the consistency of the method depends on the pseudo samples, this practice
should not be seen as a robust method. It would be appropriate, though, to refer
to this use of the simple regression model as leveraging covariates to improve
precision. Leveraging covariates to improve precision is an approach for analysis
of randomized trials, where the effect is identified so no covariate adjustment is
needed, but the use of a working regression model (not assumed to be correct)
helps explain outcome variance and thereby makes the effect estimate more
precise [55, 40]. Intuitively, the pseudo samples mimic a randomized trial, so
the simple regression is just a working model to improve precision.

In the current setting of estimating marginal natural (in)direct effects, meth-
ods that first create three pseudo samples representing the conditions being
contrasted (by weighting only or weighting combined with prediction/imputa-
tion of Y1M0) and then fit a simple model regressing outcome on covariates
and conditions (indicated by dummy variables) should be seen as methods to
leverage covariates to improve precision, not as robust methods. For interested
readers, a preprint of this paper [26] (version 3, section 6) includes a translation
to the current setting of techniques for using covariates to improve precision
that apply to different outcome types. It also comments on similarity with and
key distinctions from several methods that estimate conditional effects [53, 38].

8. Confidence interval estimation

The previous sections cover point estimation of the effects. We now turn to
interval estimation. All the estimators in this paper are M-estimators; they
are solutions of generalized estimating equations. Applying the calculus of M-
estimators [39], we derive general formulas for the asymptotic variance of each
of the estimators when all estimation components (weights, conditional medi-
ator density, conditional mean outcome/effect) are based on (semi)parametric
models. The derivations are placed in the Technical Appendix.
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As such variance estimators depend on the specific models used for the dif-
ferent estimation components, they are clunky to use in practice. We use boot-
strapping as a generic tool to obtain confidence intervals for all the estimators.
As the data example includes quite a few categorical covariate/mediator vari-
ables, a challenge when using the simple resampling bootstrap [3] is that some
bootstrap samples do not cover all values (and combinations of values) of those
variables, resulting in predictors being dropped from models and predictions
being distorted. To avoid this problem we instead use a continuous weights
bootstrap [59]. With both bootstrap procedures, the making of a bootstrap
sample can be seen as weighting the observations of the original sample by a
set of random weights that are identically distributed: the resampling bootstrap
uses integer weights drawn from a uniform Multinomial distribution; the con-
tinuous weights bootstrap draws weights from a continuous distribution. We
use the version proposed by Xu et al. [59] based on the uniform Dirichlet dis-
tribution, where the weights sum to sample size n, have mean 1 and variance
(n−1)/(n+1). (For comparison, resampling weights sum to n, have mean 1 and
variance (n− 1)/n.) Bootstrap samples based on continuous bootstrap weights
retain all observations, thus they do not lose data patterns.

9. Data example application

In this example A is a binary variable treat indicating whether a student is
in the treatment (i.e., combined intervention) or control condition. Y is binary
variable drink indicating whether the student engages in weekly drinking at
22 months. M consists of three mediators measured at six months: attitudes
towards alcohol consumption (binary variable att indicating attitudes against
consumption), self-control in situations involving alcohol (continuous variable
sfc), and parental rules regarding alcohol (binary variable rul indicating strict
rules). Baseline covariates C include demographic variables age, sex, religion,
education track (academic or vocational); baseline measures of the mediators
(att0, sfc0, rul0); and baseline measure of the outcome (drink0). Table 3 sum-
marizes the baseline covariates in the synthetic sample, showing some covariate
imbalance between the intervention and control conditions. The unconfounded-
ness assumption means that the listed baseline covariates are sufficient to remove
exposure-mediator, exposure-outcome and mediator-outcome confounding.

With this example, we target marginal effects on the additive scale. The total
effect can be understood as a reduction in weekly drinking prevalence that would
occur had all students received the treatment versus no students received the
treatment. The natural indirect effect is roughly interpreted as the component
of that prevalence reduction that is due to the intervention’s impact on the
mediators, and the natural direct effect is the remaining component.

9.1. Weighting
Weights estimation
The estimators have different requirements in terms of weights – see Tables 2.
The pure weighting estimator and all the MR/R estimators involve the trio of
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Table 3

Baseline covariates in the synthetic dataset based on the PAS study
Treated Control Total
(n=778) (n=907) (n=1685)

Age
11 35 (4.5%) 38 (4.2%) 73 (4.3%)
12 559 (71.9%) 682 (75.2%) 1241 (73.6%)
13 184 (23.7%) 187 (20.6%) 371 (22.0%)

Sex
female 305 (39.2%) 448 (49.4%) 753 (44.7%)
male 473 (60.8%) 459 (50.6%) 932 (55.3%)

Religion
Catholic 62 (8.0%) 319 (35.2%) 381 (22.6%)
Protestant/other Christian 84 (10.8%) 114 (12.6%) 198 (11.8%)
Islam 45 (5.8%) 34 (3.7%) 79 (4.7%)
not religiously socialized 552 (71.0%) 416 (45.9%) 968 (57.4%)
other 35 (4.5%) 24 (2.6%) 59 (3.5%)

Education tract
vocational 276 (35.5%) 547 (60.3%) 823 (48.8%)
academic 502 (64.5%) 360 (39.7%) 862 (51.2%)

Baseline weekly drinking
yes 96 (12.3%) 166 (18.3%) 262 (9.0%)
no 625 (80.3%) 647 (71.3%) 1272 (75.5%)
no answer 57 (7.3%) 94 (10.4%) 151 (9.0%)

Baseline attitude
negative re. alcohol use 518 (66.6%) 594 (65.5%) 1112 (66.0%)
less negative. 260 (33.4%) 313 (34.5%) 573 (34.0%)

Baseline parental rule
strict 561 (72.1%) 580 (63.9%) 1141 (67.7%)
not strict 271 (27.9%) 327 (36.1%) 544 (32.3%)

Baseline self control
mean (SD) 3.59 (0.55) 3.57 (0.53) 3.58 (0.54)
median [min, max] 3.62 [1.69,4.85] 3.62 [2.00,4.92] 3.62 [1.69,4.92]

ω0(C), ω1(C) and ωx(C,M) weights. Several nonrobust estimators involve some
(but not all) weights: psYpred estimators involve ω0(C) and Ypred involves
ox(C,M) weights. The nonrobust Y2pred and MsimYpred estimators do not
require weights. Here we focus on the ω0(C), ω1(C) and ωx(C,M) weights.

We estimate weights via parametric models. ω1(C) and ω0(C) are estimated
via on a propensity score model, i.e., a model for P(A | C). ωx(C,M) is estimated
by the second method, using the combination of this propensity score model
and a model for P(A | C,M). (We avoid the first method which would require
fitting six models for the three mediators.) For both models we use logistic
regression with spline terms on continuous predictors and some interaction terms
in the second model (the result of several rounds of model fitting and balance
checking).16 The model formulas used for P(A | C) and P(A | C,M) are:

treat ∼ sex + age + edu + religion + drink0 + att0 + rul0 + ns(sfc0, 4),
treat ∼ sex + age + edu + religion + drink0 + att0 * att + rul0 * rul +

ns(sf0, 4) * ns(sfc, 4).
The distributions of these weights (in stabilized form, i.e., with mean 1 in each

group) are shown in Figure 7. Some of the weights are large, but not extreme.

Balance checking

Balance on the means of covariates and mediators for the pseudo treated, con-
trol and cross-world samples are shown in Figure 8 (based on the prescription

16The function ns(v,d) from R-package splines implements cubic splines on variable v
with d degrees of freedom.



Causal mediation from simple to robust 33

Fig 7. Distributions of weights for the pseudo control (p00), treated (p11) and cross-world
(p10) samples. For comparability, stabilized weights are shown.

in Figure 4). Overall, balance improves after weighting; this is prominent for
covariates sex, education track, religion, and the three mediators. Interestingly,
balance on baseline self-control (sfc0) is slightly worsened, although the stan-
dardized mean difference is still modest. In addition to mean balance, distribu-
tional balance on continuous covariates and mediators should also be checked,
e.g., using the R-package cobalt [4].

Note that the comments in the plot labels specifically address estimators that
depend on all balance components, here the pure weighting estimator (wtd). For
estimators with some robustness, we recommend a combination of two plots: a
full balance plot capturing balance resulting from all the weighting involved in
the estimator, and a key balance plot capturing the balance component that the
estimator absolutely depends on. For Ypred.MR, for example, the full balance
plot is the same plot in Figure 8 without the comments in the plot labels, and
the key balance plot picks out the ‘p10–p00’ component.

For nonrobust estimators that depend on a weighting element, balance check-
ing is specific to the weighting. For example, psYpred1 and psYpred2 require
covariate balance between the pseudo control sample and the full sample; Ypred
requires covariate-and-mediator balance between the pseudo cross-world sub-
sample and the control subsample. All these variants of balance checking are im-
plemented in the mediationClarity package (see details in package vignette).

9.2. Other estimation components

Outcome mean models

The various estimators call for fitting models for the outcome given covariates or
given covariates and mediators to subsamples or pseudo samples. We use logistic
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Fig 8. Covariate and mediator balance for pseudo treated (p11), pseudo control (p00) and
pseudo cross-world (p10) samples. For continuous covariate sfc0 and continuous mediator
sfc (marked with *), the mean differences are standardized. The parenthesized comments
are specific to the wtd and wt-Cadj estimators, indicating that all balance components are
important to those estimators.

regression for the binary outcome. Models that regress outcome on covariates
(estimating E[Y | C,A = 1], E[Y | C,A = 0] or E[Y1M0 | C]) use formula

drink ∼ sex + age + edu + religion + drink0 + att0 + rul0 + ns(sfc0, 3).
Models that regress outcome on both covariates and mediators (estimating
E[Y | C,M,A = 1]) use formula

drink ∼ sex + age + edu + religion + drink0 + att0 + rul0 + ns(sfc0, 3) +
att + rul + ns(sfc, 3).

Mediator density model

The MsimYpred estimators require mediator density modeling in the control
subsample or pseudo control sample. We fit logit models for the two binary me-
diators att (Ma) and rul (M b), and a linear model for the continuous mediator
sfc (M c), with formulas:
att ∼ age + sex + edu + religion + drink0 + att0 + rul0 + ns(sfc0, 3)
rul ∼ age + sex + edu + religion + drink0 + att0 + rul0 + ns(sfc0, 3) + att
sfc ∼ age + sex + edu + religion + drink0 + att0 + rul0 + ns(sfc0, 3) + att + rul
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and assume the errors in the third model are normally distributed and ho-
moscedastic. These models estimate P(Ma | C,A= 0), P(M b | C,Ma, A = 0),
and P(M c | C,Ma,M b, A=0), respectively.17

Model for NDE0 given covariates

The NDEpred estimators involve regressing the proxy of the individual NDE0
(predicted Y1M0 minus observed Y0) on covariates in the control subsample
or pseudo control sample. As the difference between the two (predicted and
observed) binary outcomes is bounded in the [−1, 1] interval, we transform it by
adding 1 then dividing by 2 to map to the [0, 1] interval, and fit the regression
model to the transformed difference using logit link. Predictions based on this
model are back transformed by multiplying by 2 then subtracting 1.18 The
formula we use for this model is:

trans.diff ∼ age + sex + edu + religion + drink0 + att0 + rul0 + ns(sfc0, 3).

9.3. Results

Effect estimates from different estimators are shown in Figure 9. To avoid clut-
ter, for estimator types that have multiple versions, we show only one version.
The estimates are quite similar. Overall, it appears that the effect of the inter-
vention on weekly drinking at follow-up consists of a small part mediated by
the mediators being considered (alcohol-related attitudes, parental rules, and
self-control), and a larger direct effect.

As these are estimates from one dataset, one should be cautious not to infer
characteristics of the estimators. That said, we note that within each pair of
nonrobust and (more) robust estimators, the (more) robust one tends to have
larger variance than the nonrobust one, with wider confidence intervals. The
pure weighting estimator by theory has the largest variance, although for this
dataset this is not obvious from the confidence interval widths.

10. Concluding remarks

In this paper we have shown how a range of estimators may be constructed
based on two strategies that are familiar to many who are involved in statistical
analyses (weighting and model-based prediction) and a simple way of combining
them (weighted models); this is the paper’s primary goal. The key ideas of this
exercise, which are not specific to natural effects but apply generally, are (i)
to use these tools flexibly to put together the different pieces of the estimation
puzzle, where the puzzle is defined by the identification result of the effects of

17Of the three mediators, we choose to model sfc last for convenience. This avoids having
to specify models with sfc as another continuous predictor, which would be more complicated.

18This is equivalent to using the tanh link for a response variable bounded in [−1, 1] [56];
the transformation trick allows fitting the model using standard software with logit link.
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Fig 9. Effect estimates from different estimators, shown as reduction in outcome (weekly
drinking) prevalence. The psYpred and MsimYpred estimators shown here are the psYpred2
and MsimYpred1 versions in Table 2.

interest; and (ii) to induce robustness on pieces of the puzzle by using weighted
models.

Thinking more broadly, this approach to constructing estimators could be
applied to other marginal estimands, including interventional effects of vari-
ous kinds [28] and causal decomposition of disparities [18]. A key difference is
that these other estimands involve setting the mediator (or the target variable
of causal decomposition) to one of a range of interventional distributions (de-
pending on the estimand) which may condition on or marginalize over certain
pre-exposure and post-exposure covariates. This means the weighting scheme
needs to be tailored and may be more complicated, and the density being mim-
icked may condition (or not) on different types of variables, and may be known
or need to be estimated. Whatever the case, the idea of visualizing the iden-
tification result to bring clarity to where different types of information (pieces
of the puzzle) come from, and a similar exercise of assembling them, will be
productive in generating estimators, and importantly will make the estimator
transparent to the user (as a sound solution to the puzzle).

On a technical note, the focal estimand in the current case (the identification
result of the mean cross-world potential outcome) is an iterated expectation,
and there are different ways an iterated expectation can be estimated. For the
current case, one way involves fitting repeated conditional mean models (iter-
ated regression), and another involves integrating an inner expectation over an
estimated conditional density (here via simulation). Weights can be used to fit
the models to the space of predictors where they are used for prediction/simula-
tion, to help correct bias due to model mis-specification. One point we noted is
that this provides only a partial correction for misspecified conditional density
models. This point is likely relevant to some of the more complicated estimands
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for which some density estimation cannot be avoided.
One important topic that was not covered in this paper is sensitivity analysis

to violation of identifying assumptions. While several sensitivity analysis meth-
ods have been proposed, there is room for work that connects each of the many
estimation methods that exist and may be used in practice to relevant sensitiv-
ity analyses, or at the least point out which estimation methods can (and which
cannot) be appropriately paired with which sensitivity analyses. This would be
very helpful to the use of methods in practice.
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bust and more robust estimators. Part C derives general asymptotic variance
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