
S1 APPENDIX. SIMULATION RESULTS COMPARING METHOD 1 AND METHOD 2
WHEN THE OUTCOME MODEL IS CORRECTLY OR INCORRECTLY SPECIFIED

(for the paper Sensitivity analyses for effect modifiers not observed in the target population when generalizing
treatment effects from a randomized controlled trial: Assumptions, models, effect scales, data scenarios, and
implementation details)

The simulations here use the same setup as in [1]. In fact, results regarding bias have been reported in [1].
In the current simulations, we track not only bias, but also variance, RMSE, model estimated variance, and
confidence interval coverage proportion.

Data generation. All the scenarios include a X variable, a Z variable and a V variable. X is standard
normal. Z and V are first generated as multivariate normal with correlations ranging from 0 to ±0.5, then
each is either kept in continuous form or dichotomized. When either Z or V is binary, its prevalence is 0.25
in the trial sample and 0.5 in the target population. When either Z or V is continuous, it has mean 0 in the
trial sample and 0.5 in the target population, and variance 1 in both. In the trial, A is randomly assigned to
0 and 1 with equal probability. With regards to the outcome, for the continuous Z and V combination, we
use a base model with Z and V as effect modifiers, plus three other models, each with one additional effect
modifier from among Z2, V 2 or ZV :

A. Y = X +A+ Z + V + ZA+ V A+ εY ,
B. Y = X +A+ Z + V + ZA+ V A+ Z2A+ εY ,
C. Y = X +A+ Z + V + ZA+ V A+ V 2A+ εY ,
D. Y = X +A+ Z + V + ZA+ V A+ ZV A+ εY ,

εY ∼ N(0, 4).

For the continuous Z and binary V combination, we use models A, B and D. For the binary Z and continuous
V combination, we use A, C and D. For the binary Z and V combination, we use A and D. For each scenario
(combining Z and V types and outcome model), we generate 100,000 pairs of datasets including an n = 400
trial sample and an n = 5000 target population sample.

Outcome model specification in method implementation. For both methods 1 and 2, in all scenarios we imple-
ment the method with the correct outcome model. For scenarios including Z2, V 2 or ZV as effect modifiers,
we also implement the methods with the misspecified outcome model that leaves out these terms and retains
only Z and V as effect modifiers; this misspecified model is perhaps the most commonly encountered in
practice.

For method 2, the weighting is with respect to X,Z using weights based on a logistic regression of sample
membership. Continuous predictors are included using natural splines.

Results. The findings from these simulations are already summarized in the text of the paper. Here we
include all the plots of the results, starting on the next page.
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Figure 1: Bias
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Figure 2: RMSE
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Figure 3: Standard Error
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Figure 4: Model-estimated standardeError
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Figure 5: Coverage proportion of 95% confidence interval
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S2 APPENDIX.  A UNIFIED EXPLANATION OF WEIGHTING PROCEDURES FOR THE 

DIFFERENT DATA SCENARIOS 

 

(for the paper Sensitivity analyses for effect modifiers not observed in the target population when 

generalizing treatment effects from a randomized controlled trial: Assumptions, models, effect scales, 

data scenarios, and implementation details) 

 

Method 2 presented in this paper call for weighting the trial sample so that it resembles the target 

population with respect to the distribution of the observed baseline covariates 𝑋, 𝑍. Depending 

on the source of target population data – a full population (𝑃 = 1) dataset or a representative 

(𝑆 = 2) sample, and how it relates to the trial sample (see example scenarios in Fig. 1) – the 

specific weighting procedures vary. All these weighting procedures, however, relate to one idea 

we call “ratio-of-probability weighting”. We borrow this term from [1], who used it in a different 

context (mediation analysis), but the term is appropriate for our current purpose. The idea is 

simple: to weight a sample E so that it resembles sample/population F with respect to the 

distribution of variables 𝐶, we use weights that are ratios of sample membership probabilities 

conditional on 𝐶, 𝑊𝑖 =
P(E|𝐶 = 𝐶𝑖)

P(F|𝐶 = 𝐶𝑖)
. We now elaborate how this plays out in several data 

scenarios. 

 

In scenario 1(b), the weights for the 𝑆 = 1 sample to make it resemble the 𝑆 = 2 sample with 

respect to baseline covariates 𝑋, 𝑍 are 

𝑊𝑖 =
P(𝑆 = 2|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)

P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)
. (w1) 

With data only from these two samples (assumed to be disjoint), we estimate these weights by 

stacking the two datasets and fitting a model for sample membership 𝑆 with 𝑋, 𝑍 as predictors 

(e.g., using logistic or another model deemed appropriate), and obtaining for each trial 

participant a weight that is the model-predicted odds of 𝑆 = 2 vs. 𝑆 = 1 given their 𝑋, 𝑍 values. 

Formally, this is an estimate of 
P(𝑆 = 2|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖 , (𝑆 = 1 or 𝑆 = 2))

P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖 , (𝑆 = 1 or 𝑆 = 2))
, which is equivalent 

to (w1). This weighting-by-the-odds method [2,3] is analogous to the propensity score weighting 

version for estimating the average treatment effect on the treated, where control units are 

weighted by their predicted odds of being in the treatment vs. control condition [4]. 

 

In scenario 1(a), the weights for the 𝑆 = 1 sample to make it resemble the 𝑃 = 1 dataset with 

respect to baseline covariates 𝑋, 𝑍  are 

𝑊𝑖 =
P(𝑃 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)

P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)
. (w2) 

If we know which units in the target population dataset are the specific units in the trial, we can 

fit to the target population dataset a model for trial participation with 𝑋, 𝑍  as predictors, and use 

inverse-trial-participation-probability weighting to weight the trial sample up to the population. 

The weights are estimates of 
1

P(𝑆 = 1|𝑋 = 𝑋𝑖 , 𝑍 = 𝑍𝑖, 𝑃 = 1)
=

P(𝑃 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖, 𝑃 = 1)

P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖 , 𝑃 = 1)
, 

which are equivalent to (w2). This weighting is analogous to inverse-probability-of-selection 

weighting in complex survey design [5]. If, on the other hand, the trial participants cannot be 

linked to their records in the population dataset, we can still estimate these weights by treating 



2 

 

the population dataset as an 𝑆 = 2 dataset, stacking it with the trial dataset and using weighting-

by-the-odds as in scenario 1(b). In this case, these artificial “odds” are estimates of 
P(𝑃 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)/[P(𝑃 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)+P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)]

P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)/[P(𝑃 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)+P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)]
, which are 

equivalent to (w2). 

 

In a slightly different scenario where the trial sample has been drawn from within an 

observational sample that represents the target population, we proceed as in scenario 1(a), but 

treating the observational sample as if it were the population. 

 

When the problem is one of transportation, where the trial sample is not part of the target 

population, the same weight formula (w2) or (w1) applies. Given a 𝑃 = 1 or 𝑆 = 2 dataset for 

the target population, we need to stack it with the 𝑆 = 1 dataset, and use weighting-by-the-odds.  

 

In the description of the sensitivity analyses, we mentioned that weighting-based sensitivity 

analyses are used only if a target population dataset (either 𝑃 = 1 or 𝑆 = 2) is available. To be 

precise, in a special case where there is no target population dataset, but information is available 

on the target population distribution of {𝑋, 𝑍} (e.g., from a census or a prior population 

estimation exercise that reported these variables’ joint distribution), weighting may also be 

implemented, using 𝑊𝑖 =
P(𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖|𝑃 = 1)

P(𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖|𝑆 = 1)
, which are proportional to (w2). Here the 

numerator and denominator are the prevalences/densities of the {𝑋𝑖, 𝑍𝑖} pattern in the target 

population and in the trial sample, respectively. This is only recommended for discrete {𝑋, 𝑍} 

with a small number of combined categories, because beyond this situation, it is generally hard 

to estimate the denominator and the available estimates for the numerator may not be reliable. 

 

To sum up, in most data scenarios where a dataset for/representing the target population is 

available, weighting the trial sample to make it resemble the target population involves data 

stacking and weighting-by-the-odds. The exception is when the trial sample is part of and can be 

identified within the population dataset, in which case inverse-probability weighting is used. If 

only summary statistics are available for the target population, the sensitivity analyses that 

involve weighting will generally not be used, except the very special case mentioned in the 

previous paragraph. 
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S3 APPENDIX. ADDITIONAL MATERIAL ON EFFECT MODIFIERS NOT OBSERVED
IN THE TRIAL

(for the paper Sensitivity analyses for effect modifiers not observed in the target population when generalizing
treatment effects from a randomized controlled trial: Assumptions, models, effect scales, data scenarios, and
implementation details)

Denote the effect modifier not observed in the trial by U . As stated in the text, U can be a specific variable
(e.g., addiction severity) or a generic representation of unknown factors. Mimicking the V case, assume the
causal model

E[Yi(a)] = βo + βaa+ βxXi + βzZi + βzaZia+ βuUi + βuaUia.

The TATE formula copied from the V case (replacing V with U),

TATE = βa + βzaE[Z|P = 1] + βuaE[U |P = 1],

is not helpful, as it requires estimates for βa, βza, βua, all of which are not identified from trial data because
we do not observe U . Let’s try to see if we can do something else that might work better. The following
(essentially a bias formula) is obtained by comparing the formulas for TATE and SATE.

TATE = SATE + βza {E[Z|P = 1]− E[Z|S = 1]}︸ ︷︷ ︸
∆Z

+βua {E[U |P = 1]− E[U |S = 1]}︸ ︷︷ ︸
∆U

.

Here SATE is identified from trial data. So is ∆Z as Z is observed in both the trial and the target population.
Suppose we are willing to treat βua (effect modification by U) and ∆U (the difference in mean U between
the target population and the trial) as sensitivity parameters for which we will specify ranges, as these two
parameters are meaningful and somewhat imaginable. We are still stuck with an unidentified parameter,
βza.

If we use the weighting approach, and manage to equate mean Z between the trial and the target population,
the second term in the formula vanishes, so we no longer have to deal with βza. However, the other terms
also change. Instead of SATE, we now can estimate a weighted ATE in the weighted trial sample, which
is fine. The sensitivity parameter βua retains its meaning, so it does not pose a problem. However, in the
place of E[U |S = 1], we now have the weighted trial mean U , so instead of the ∆U above, we now have the
difference in mean U between the target population and the weighted trial sample, an obscure quantity that
is not as imaginable and meaningful as ∆U , so it is not suitable to serve as a sensitivity parameter.

The conclusion then is that the sensitivity analyses developed for the V case do not extend to the U case!

Correction of previously published results: Our previous paper [1] claimed that the methods do extend to
the U case if we consider a special U that is the remaining composite effect modifier after accounting for Z,
i.e., it captures all effect modification forces other than Z and it is independent of X,Z (intuitively it is a
combination of all the remaining effect modifiers and X,Z have been “regressed out” of it), then due to this
independence, a regression model without U fit to the trial sample can recover βza, so the TATE formula
above can be used. Also due to this independence, weighting based on X,Z does not change the distribution
of U , so after weighting, we still have the simple ∆U in the TATE formula, without having to deal with
a weighted trial sample mean U that is different from the original trial sample mean U . This reasoning is
flawed. Both parts of this reasoning hangs on the idea of a composite U independent of X,Z. The problem
is with Z and U both differentially distributed between the trial sample and the target population (the
motivating factor for sensitivity analysis for U), the association of Z and U is generally different between
the trial sample and the target population due to collider bias when conditioning on sample membership.
Thus independence of U and Z does not exists in both places. It is independence in the trial sample that
would give the result of recovering βza and weighting not changing the distribution of U , but it needs to be
independence in the target population to make the notion of U meaningful as we are interested in the universe

1



that is the target population, not just one specific piece of it that is the trial sample. In addition, there is
another flaw, that regressing X,Z out of U results in U being uncorrelated with X,Z, not independence. If
we replace independence with uncorrelatedness, then we also lose the claim that weighting based on X,Z
does not change the distribution of U .
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S4 APPENDIX.  THE SENSITIVITY ANALYSES WHEN RANDOM INTERCEPTS MODELS 

ARE USED 

 

(for the paper Sensitivity analyses for effect modifiers not observed in the target population when 

generalizing treatment effects from a randomized controlled trial: Assumptions, models, effect scales, 

data scenarios, and implementation details) 

 

When the trial data are analyzed using random intercepts models, it is natural to define treatment 

effects as differences in pre-to-post change in outcome between treatment and control (or effect 

on ‘potential outcome change’). It turns out that this is equivalent to effect on potential outcome 

post-treatment. Take any individual 𝑖. Let 𝑌𝑖1 denote individual 𝑖’s pre-treatment outcome 

measure, and 𝑌𝑖2(𝑎) denote individual 𝑖’s potential outcome post-treatment if treatment is set to 

𝑎. Denote potential outcome change under treatment 𝑎 as 𝐻𝑖(𝑎). Then 𝐻𝑖(𝑎) = 𝑌𝑖2(𝑎) − 𝑌𝑖1. 

The individual treatment effect defined as difference in potential outcome change is formally 

TE𝑖 = E[𝐻𝑖(1) − 𝐻𝑖(0)], which is equal to E[𝑌𝑖2(1) − 𝑌𝑖2(0)]. 
 

In this case, the same sensitivity analyses apply, with minor modifications to the models fit and 

the estimates used. The explanation below references the simpler case where treatment effect is 

the difference in potential outcomes post-treatment that we used to describe the methods in the 

main text of the paper; for brevity, we will refer to that case as “the simple case”. 

 

To estimate the ATE from a trial with both baseline and post-treatment measures of the outcome, 

the simplest model that can be used is the model without covariates, 

 

E[𝑌𝑖𝑗|𝐹𝑖𝑗 , 𝐴𝑖] = 𝑐0𝑖 + 𝛾0 + 𝛾𝑎𝐴𝑖 + 𝛾𝑓𝐹𝑖𝑗 + 𝛾𝑓𝑎𝐹𝑖𝑗𝐴𝑖 

 

where 𝑖 indexes the person, 𝑗 indexes the observation (each person has two observations), 𝑇 

indicates treatment condition assigned, 𝐹 indicates that the outcome is post- versus pre-

treatment, and 𝑐0𝑖 is the departure of individual 𝑖’s intercept from the mean intercept 𝛾0. In this 

model, 𝛾𝑓 and (𝛾𝑓 + 𝛾𝑓𝑎) respectively estimate the average pre-to-post change in outcome in the 

control group and in the treatment group; 𝛾𝑓𝑎 estimates the difference between these two average 

changes, i.e., SATE. This estimator is analogous to estimating SATE using the difference in 

mean outcome between the two conditions in the simple case. 

 

Note that in this model the stand-alone treatment term 𝐴 is included just to allow the pre-

treatment outcome to differ between the two treatment conditions. Its coefficient (𝛾𝑎) is usually 

small because due to randomization, its expectation is zero.  

 

Another way to estimate SATE is fit a model that adjusts for baseline covariates but not letting 

the covariates interact with treatment; this is analogous to the regression of the outcome on 

treatment and covariates in the simple case. With 𝑋 and 𝑍, the model is 

 

E[𝑌𝑖𝑗|𝐹𝑖𝑗, 𝐴𝑖, 𝑋𝑖, 𝑍𝑖] = 𝑐0𝑖 + (𝛾0 + 𝛾𝑥𝑋𝑖 + 𝛾𝑧𝑍𝑖) + 𝛾𝑎𝐴𝑖 + (𝛾𝑓 + 𝛾𝑥𝑓𝑋𝑖 + 𝛾𝑧𝑓𝑍𝑖)𝐹𝑖𝑗 + 𝛾𝑓𝑎𝐹𝑖𝑗𝐴𝑖 . 

 

Note that this model includes the possibility that some baseline covariates may influence change 

in outcome that is not due to treatment, via the interaction terms of 𝑋 and 𝑍 with 𝐹; this does not 



2 

 

mean they modify treatment effect. Treatment effect, again, is represented by 𝛾𝑝𝑎 and is not 

allowed to vary as a function of baseline covariates, i.e., it is SATE. The model can be written in 

a more conventional form, 

 

E[𝑌𝑖𝑗|𝐹𝑖𝑗, 𝐴𝑖, 𝑋𝑖, 𝑍𝑖] = 𝑐0𝑖 + 𝛾0 + 𝛾𝑎𝐴𝑖 + 𝛾𝑓𝐹𝑖𝑗 + 𝛾𝑓𝑎𝐹𝑖𝑗𝐴𝑖 + 𝛾𝑥𝑋𝑖 + 𝛾𝑧𝑍𝑖 + 𝛾𝑥𝑓𝑋𝑖𝐹𝑖𝑗 + 𝛾𝑧𝑓𝑍𝑖𝐹𝑖𝑗. 

 

The calibration of TATE and the sensitivity analyses rely on a model that captures treatment 

effect heterogeneity. With 𝑋 and 𝑍, the potential outcomes model is 

E[𝑌𝑖𝑗(𝑎)] = 𝑏0𝑖 + (𝛽0 + 𝛽𝑥𝑋𝑖 + 𝛽𝑧𝑍𝑖) + 𝛽𝑎𝐴 + (𝛽𝑓 + 𝛽𝑥𝑓𝑋𝑖 + 𝛽𝑧𝑓𝑍𝑖)𝐹𝑖𝑗 + (𝛽𝑓𝑎 + 𝛽𝑧𝑓𝑎𝑍𝑖)𝐹𝑖𝑗𝑎, 

in which treatment effect modification by 𝑍 is represented by 𝛽𝑧𝑓𝑎. Written in a more 

conventional form, 

 

E[𝑌𝑖𝑗(𝑎)] = 𝑏0𝑖 + 𝛽0 + 𝛽𝑎𝑎 + 𝛽𝑓𝐹𝑖𝑗 + 𝛽𝑓𝑎𝐹𝑖𝑎 + 𝛽𝑥𝑋𝑖 + 𝛽𝑧𝑍𝑖 + 𝛽𝑥𝑓𝑋𝑖𝐹𝑖𝑗 + 𝛽𝑧𝑓𝑍𝑖𝐹𝑖𝑗 + 𝛽𝑧𝑓𝑎𝑍𝑖𝐹𝑖𝑗𝑎. 

 

The individual treatment effect has expectation 𝛽𝑓𝑎 + 𝛽𝑧𝑓𝑎𝑍𝑖, and TATE = 𝛽𝑓𝑎 +

𝛽𝑧𝑓𝑎E[𝑍|𝑃 = 1]. The same sensitivity analyses as in the simple case apply, with the following 

changes in the regression model and the TATE formula. 

 

With effect modifier 𝑉 observed in the trial but not the target population (and effect modifier 𝑍 

observed in both samples), the effect modification regression model is 

 

E[𝑌𝑖𝑗|𝐹𝑖𝑗, 𝐴𝑖 , 𝑋𝑖 , 𝑍𝑖 , 𝑉𝑖]

= 𝑏0𝑖 + 𝛽0 + 𝛽𝑎𝐴𝑖 + 𝛽𝑓𝐹𝑖𝑗 + 𝛽𝑓𝑎𝐹𝑖𝑗𝐴𝑖 + 𝛽𝑥𝑋𝑖 + 𝛽𝑧𝑍𝑖 + 𝛽𝑣𝑉𝑖 + 𝛽𝑥𝑓𝑋𝑖𝐹𝑖𝑗 + 𝛽𝑧𝑓𝑍𝑖𝐹𝑖𝑗
+ 𝛽𝑣𝑓𝑉𝑖𝐹𝑖𝑗 + 𝛽𝑧𝑓𝑎𝑍𝑖𝐹𝑖𝑗𝐴𝑖 + 𝛽𝑣𝑓𝑎𝑉𝑖𝐹𝑖𝑗𝐴𝑖 

 

(interaction terms of 𝑋, 𝑍, 𝑉 variables with 𝐹 may be removed if their coefficients are zero). The 

formula for TATE is  
TATE = 𝛽𝑓𝑎 + 𝛽𝑧𝑓𝑎E[𝑍|𝑃 = 1] + 𝛽𝑣𝑓𝑎E[𝑉|𝑃 = 1]. 

 

 

 



S5 APPENDIX. ADDITIONAL DETAILS ON EXTENSION 2 FOR MULTIPLICATIVE
EFFECTS AND LOG/LOGIT LINK MODELS

(for the paper Sensitivity analyses for effect modifiers not observed in the target population when generalizing
treatment effects from a randomized controlled trial: Assumptions, models, effect scales, data scenarios, and
implementation details)

The main text of the paper presents the case of a binary outcome and an assumed logit causal model. The
reasoning for other cases with log/logit link models and multiplicative effects is similar. While it is somewhat
repetitive, for clarity, we list the models and effects for a couple of other cases.

Binary outcome, log-probability model, risk ratio scale effects

The causal model:

log{Pr[Yi(a) = 1]} = β0 + βaa+ βxXi + βzZi + βzaZia+ βvVi + βvaVia.

The regression model:

log{Pr[Y = 1|A,X,Z, V ]} = β0 + βaa+ βxX + βzZ + βzaZiA+ βvV + βvaV A.

Individual effect on the risk ratio (RR) and log RR scales:

TERR
i :=

Pr[Yi(1) = 1]

Pr[Yi(0) = 1]
= exp(βa + βzaZi + βvaVi),

TElog_RR
i := log(TERR

i ) = βa + βzaZi + βvaVi.

TATE as arithmetic mean of individual effects on the log RR scale and geometric mean of individual effects
on the RR scale:

TATElog_RR = βa + βzaE[Z|P = 1] + βvaE[V |P = 1],

TATERR = exp(βa + βzaE[Z|P = 1] + βvaE[V |P = 1]).

Count outcome, log link model, mean/rate ratio scale effects

The causal model:

log{E[Yi(a)]} = β0 + βaa+ βxXi + βzZi + βzaZia+ βvVi + βvaVia.

The regression model:

log{E[Y |A,X,Z, V ]} = β0 + βaa+ βxX + βzZ + βzaZiA+ βvV + βvaV A.

Individual effect on the mean ratio (MR) (or rate ratio) and log MR (or log rate ratio) scales:

TEMR
i :=

E[Yi(1)]
E[Yi(0)]

= exp(βa + βzaZi + βvaVi),

TElog_MR
i := log(TEMR

i ) = βa + βzaZi + βvaVi.

TATE as arithmetic mean of individual effects on the log MR (or log rate ratio) scale and geometric mean
of individual effects on the MR (or rate ratio) scale:

TATElog_MR = βa + βzaE[Z|P = 1] + βvaE[V |P = 1],

TATEMR = exp(βa + βzaE[Z|P = 1] + βvaE[V |P = 1]).
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Relating the average causal OR and the conditional OR estimated by logistic regression with
main effects only

This discussion about average causal effects is more general than the specific case of the trial sample or
target population in this paper. Therefore we drop the reference to the population/sample, and talk about
the ATE in a generic way.

Before considering multiplicative effects, let’s refer back to the case of additive effects based on a linear
model. Clearly, the individual effects vary, as they depend on the individual’s Zi and Vi. We can fit a correct
linear regression model (with A,X,Z, ZA, V, V A as predictors, predict the individual treatment effects using
βa+βzaZi+βvaVi and averaging those to estimate the ATE, which equals βa+βzaEZ+βvaEV . On the other
hand, if we fit a linear regression model with A,X,Z, V as predictors (the model with main effects only),
then the regression coefficient γa of A in this model is equivalent to βa + βzaEZ + βvaEV , which happens
to be the ATE. This equivalence is a feature of linear models. Another way to think about this is that the
coefficient of A in the model with main effects only estimates the effect of treatment on the outcome with a
constraint that the treatment effect is the same for every individual. While for each individual, the estimate
is off by some degree, on average, it is right, as it is equal to the average of the true individual effects.

That is, the linear regression model with main effects only is an unbiased estimate of the ATE – a fact that
we already know and have used again and again in the paper for the estimation of SATE.

Now let’s translate this reasoning to the OR case.

The average causal OR is the average (= geometric mean) of individual ORs which vary as they depend on
Zi, Vi. The logistic regression model with main effects only estimates treatment effects under a constraint
(assumption) that treatment effects do not vary across individuals. Since some individuals have higher OR
and some have lower, the estimate under this constraint is almost guaranteed to be off for the individuals,
but reflects some sort of average over them. Like in the linear model case above, we can think of the OR
estimated by this model as an estimate of the average of the individual effects, i.e., the average causal OR.
However, it is only an approximate estimate because the model with main effects only has fewer predictors
than the correct model with interaction effects, and with logistic regression dropping predictors leads to less
variation in the outcome being explained, which tends to deflate the log OR; this is a problem with ORs
called non-collapsibility. Therefore, the conditional OR estimated by logistic regression with main effects is
in the spirit of estimating the average causal OR, but due to this reduction in variance explained, it tends
to underestimate the average causal OR.
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