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We investigate a method to estimate the combined effect of multiple continuous/or-
dinal mediators on a binary outcome: 1) fit a structural equation model with probit
link for the outcome and identity/probit link for continuous/ordinal mediators, 2)
predict potential outcome probabilities, and 3) compute natural direct and indirect
effects. Step 2 involves rescaling the latent continuous variable underlying the out-
come to address residual mediator variance/covariance. We evaluate the estimation
of risk-difference- and risk-ratio-based effects (RDs, RRs) using the ML, WLSMV and
Bayes estimators in Mplus. Across most variations in path-coefficient and mediator-
residual-correlation signs and strengths, and confounding situations investigated, the
method performs well with all estimators, but favors ML/WLSMV for RDs with con-
tinuous mediators, and Bayes for RRs with ordinal mediators. Bayes outperforms
WLSMV/ML regardless of mediator type when estimating RRs with small potential
outcome probabilities and in two other special cases. An adolescent alcohol preven-
tion study is used for illustration.
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The causal inference approach has added tremen-
dously to the mediation analysis literature, through
defining direct and indirect effects with causal inter-
pretation, clarifying assumptions that allow their iden-
tification, and advancing procedures to estimate them
in different settings (e.g., Albert, 2012; Coffman &
Zhong, 2012; Huang, Sivaganesan, Succop, & Good-
man, 2004; Imai, Keele, & Yamamoto, 2010; Pearl,
2001, 2009; Petersen, Sinisi, & van der Laan, 2006;
Robins & Greenland, 1992; Ten Have & Joffe, 2012;

Correspondence should be addressed to Trang Quynh
Nguyen, 624 N. Broadway, Rm. 896, Baltimore, MD 21205;
email: nqtrang.hanoi@gmail.com.

TQN was supported by NIDA grant T-32DA007292 (PI:
C.D.M. Furr-Holden). EAS was supported by NIMH grant
R01MH099010. YWV was supported by NIBIB grant
5R01EB016061-02 (PI: M. Lindquist). The alcohol pre-
vention study was funded by the Dutch Health Care Re-
search Organization, grant 6220.0021. The authors thank
the anonymous reviewers for their helpful critique.

This paper’s Web appendices can be found at http://

trang-q-nguyen.weebly.com/methods-papers.html.

VanderWeele & Vansteelandt, 2009, 2010). The last
few years have seen many applications of causal medi-
ation analysis, especially in epidemiology (e.g., Ananth
& VanderWeele, 2011; Bennett, Rankin, & Rosenberg,
2012; Nandi, Glymour, Kawachi, & VanderWeele, 2012;
Smith, Smith, Mustard, Lu, & Glazier, 2013; Subbara-
man, Lendle, van der Laan, Kaskutas, & Ahern, 2013).
Recently, methods using structural equation modeling
(SEM) to estimate causally defined effects were in-
troduced (B. O. Muthén, 2011; B. O. Muthén & As-
parouhov, 2015), making these effect definitions more
accessible to social scientists familiar with SEM.

Many social and behavioral studies examine multi-
ple mediating pathways. For example, studying the re-
lationship between childhood abuse/neglect and alco-
hol abuse, Schuck and Spatz (2001) consider a range of
psychological constructs as mediators, including depres-
sion, isolation/loneliness, worthlessness, low self-esteem
and endorsement of alcohol/drug use as a coping strat-
egy. Kelly, Hoeppner, Stout, and Pagano (2012) as-
sess both individual (self-efficacy, depression and spir-
itual/religious practice) and social (pro-abstinence and
pro-drinking social networks) factors as mediators of the
effect of Alcoholics Anonymous attendance on alcohol

http://www.tandfonline.com/eprint/3QARAM9iGNUJ2gzqPbDK/full
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consumption and abstinence. Koning, van den Eijnden,
Engels, Verdurmen, and Vollebergh (2010) evaluate a
school-based intervention that targeted adolescent self-
control and attitudes about alcohol, as well as parents’
rules and attitudes concerning adolescent alcohol use, in
order to reduce adolescent drinking.

These multiple-mediator studies have generally used
the traditional association approach, which was started
by Baron and Kenny (1986) for a single mediator, with
methods later developed for multiple-mediator situa-
tions (see MacKinnon, 2008, Ch. 5-6). To date, the
causal mediation methodological literature has largely
focused on the single mediator case. Recent work starts
to extend causal inference methods to multiple-mediator
situations, with a key theme being the mediators’ de-
pendence structure. It has been noted that the (of-
ten implicit) assumption commonly made in applied
multiple-mediator analysis, that the mediators are in-
dependent conditional on the exposure and baseline co-
variates, is unrealistic and when violated leads to biased
estimates of causal effects (Imai & Yamamoto, 2013;
VanderWeele & Vansteelandt, 2013). Work by Imai and
Yamamoto (2013) tackles the problem of identifying the
effect through a mediator of interest that is causally af-
fected by other mediators. Also with causally related
mediators, Daniel, De Stavola, Cousens, and Vanstee-
landt (2015) show the complexity of total effect decom-
position, with alternatives using different sets of effects
through different path combinations.

Estimation of the combined effect of multiple medi-
ators is a simpler objective that is also useful. It has
been tackled by VanderWeele and Vansteelandt (2013),
who propose several regression-based methods that han-
dle continuous outcomes (using linear regression), rare
binary outcomes (using logistic regression plus an ap-
proximation in deriving causal effects), and non-rare bi-
nary outcomes (using log-linear regression), as well as
a weighting-based method. Our paper considers a dif-
ferent regression-based method to address the combined
effect of multiple continuous or ordinal mediators when
the outcome is binary – extending an existing method
using probit SEM to estimate natural direct and indi-
rect effects for a binary outcome and a single mediator
(B. O. Muthén, 2011). As this method does not require
a rare outcome like the above logistic regression-based
method and is less likely to have convergence problems
than log-linear regression, it is a potentially useful ad-
dition to the current method choices for dealing with
binary outcomes.

Real data example. In The Prevention of Alco-
hol Use in Students (PAS) trial in the Netherlands,
middle schools were randomized to one of four condi-
tions: student intervention (promoting healthy attitudes

and strengthening refusal skills), parent intervention
(encouraging parental rule setting), student-and-parent
combined intervention, and control condition (regular
biology curriculum covering effects of alcohol). The
combined intervention was effective in reducing drink-
ing onset (Koning, Van Den Eijnden, Verdurmen, En-
gels, & Vollebergh, 2011; Koning et al., 2009) and drink-
ing frequency (Koning et al., 2009). Examining vari-
ables targeted by the intervention, a (non-causal) me-
diation analysis found that adolescent self-control, ado-
lescent attitudes about alcohol, and adolescent-reported
parental rules about alcohol mediated the relationship
between the combined intervention and onset of weekly
drinking by 22 months follow-up (Koning et al., 2010).
In addition to identifying likely mediators, there is gen-
erally also an interest in inferring causality and esti-
mating the mediated effect, for example, in terms of re-
duction in drinking. For these purposes the proposed
method is useful. To illustrate, we conduct a simi-
lar analysis restricted to the parent-and-student com-
bined intervention versus control, with the outcome be-
ing weekly drinking at 22 months. We consider the same
hypothesized mediators, and partition the total inter-
vention effect (reduction in drinking prevalence, com-
paring intervention condition to control condition) into:
(i) an effect mediated by the mediators (conceptualized
as reduction in drinking prevalence comparing the in-
tervention condition to a hypothetical condition of in-
tervention participation where the intervention’s effects
on the mediators are blocked) and (ii) an unmediated ef-
fect (comparing this hypothetical condition to the con-
trol condition). These, in the causal mediation litera-
ture, are called natural indirect and natural direct effects
(Pearl, 2001).

In the next sections we present the proposed method,
including a formal definition of natural direct and indi-
rect effects based on the potential outcome framework
(Rubin, 1974), the model used, identifying assumptions,
and estimation procedures. We report results from sim-
ulation studies before applying the method to the above
example. We conclude with recommendations for appli-
cation and discussion of future research. Mplus inputs
and R code for method implementation are included in
the Web appendices.

Of the three common measures of effect on a binary
outcome, the risk difference (RD), risk ratio (RR) and
odds ratio (OR), also called absolute risk, relative risk
and relative odds (Rothman, Greenland, & Lash, 2008),
in this study we consider the RD and RR. There are
reasons to suspect the proposed method works less well
with the OR, but it may be appropriate in certain cases,
which we mention in the Discussion section.

http://trang-q-nguyen.weebly.com/methods-papers.html


CAUSAL MEDIATION ANALYSIS WITH MULTIPLE MEDIATORS 3

The proposed method

Definition of causal mediation effects: a review

Consider a binary exposure X, a binary outcome
Y, and k mediators of the X → Y relationship,
M[1],M[2], ...,M[k] contained in vector M. For person i,
the potential values of the mediators if the exposure
were to take the value x is denoted by Mi(x). With the
binary exposure, there are two potentials sets of media-
tor values, Mi(0) and Mi(1), of which only one happens;
the other is contrary to fact. Also for person i, the po-
tential outcome if the exposure were to take the value
x is denoted by Yi(x); there are two such potential out-
comes Yi(0) and Yi(1), one of which is contrary to fact.
The potential outcome if the exposure were to take the
value x and if the mediators were to take the values m is
denoted by Yi(x,m). With continuous mediators, there
are an infinite number of (x,m) combinations, and for
each person, all but one are contrary to fact.

Natural direct and indirect effects are defined based
on a special set of potential outcomes, denoted by
Yi(x, Mi(x′)): potential outcome if the exposure were to
take the value x AND the mediators were to take the val-
ues that they would take if the exposure were to take the
value x′. x and x′ could be either 0 or 1 and may or may
not be the same. Each person has four such special po-
tential outcomes: Yi(0, Mi(0)), Yi(1, Mi(1)), Yi(1, Mi(0)),
and Yi(0, Mi(1)). Of these, the first two are partially
observed – Yi(0, Mi(0)) observed for those with Xi = 0,
and Yi(1, Mi(1)) observed for those with Xi = 1. The
latter two are useful for defining mediation effects, but
are completely hypothetical (or ‘truly counterfactual’),
because Xi = 1 and Mi = Mi(0) do not co-occur, and
neither do Xi = 0 and Mi = Mi(1). (There are criticisms
of the use of these truly counterfactual quantities, which
are outside the scope of this paper – see Rubin, 2004,
for example.)

The expected values of the potential outcomes
Yi(x, Mi(x′)) over the population are potential outcome
probabilities, P[Y(x, M(x′)) = 1], which serve as the basis
for defining causal effects. To simplify notation, we use
pxx′ as an abbreviation for P[Y(x, M(x′)) = 1]. In pxx′ , the
p component denotes the probability that the potential
outcome is 1, the x index refers to a (possibly contrary
to fact) exposure condition, and the x′ index refers to
a set of (possibly contrary to fact) mediator values that
correspond to exposure condition x′.

On the risk difference scale, the total effect (TE) is:

T ERD = p11 − p00.

A direct effect is an effect on the outcome of changing
the exposure, say from 0 to 1, but blocking any effect
this might have on the mediators. There are two such

effects setting the mediators at the levels they would
be for exposure condition 0 and for exposure condition
1, both called natural direct effects (NDE), which we
denote NDE(·0) and NDE(·1),

NDE(·0)RD = p10 − p00;
NDE(·1)RD = p11 − p01.

An indirect effect is an effect on the outcome of changing
the mediators as if by changing the exposure from 0 to
1, but at the same time fixing the exposure at one value.
There are two such effects setting the exposure at 0 and
setting the exposure at 1, both called natural indirect
effects (NIE), which we denote NIE(0·) and NIE(1·),

NIE(0·)RD = p01 − p00;
NIE(1·)RD = p11 − p10.

Note that TE can be decomposed into NDE and NIE in
two different ways:

T ERD = NDE(·0)RD + NIE(1·)RD;
T ERD = NIE(0·)RD + NDE(·1)RD,

Similarly, on a risk ratio scale, TE, NDE and NIE are
defined as:

T ERR =
p11

p00
;

NDE(·0)RR =
p10

p00
; NDE(·1)RR =

p11

p01
;

NIE(0·)RR =
p01

p00
; NIE(1·)RR =

p11

p10
;

and the TE decompositions are:

T ERR = NDE(·0)RR × NIE(1·)RR;
T ERR = NIE(0·)RR × NDE(·1)RR.

Identification of effects

If we observed all four Yi(x, Mi(x′)) for everyone in
the sample, we could compute TE, NDE and NIE by
averaging these quantities over the sample to get poten-
tial outcome probabilities and taking the differences or
ratios of relevant pairs of probabilities. However, only
one potential outcome is observed for each individual in
the sample, and two cannot be observed at all. In order
for the potential outcome probabilities to be identified
based on the data, we would have to be willing to make
some assumptions.

The first assumption for this method is a causal model
for the potential mediator values and potential outcomes
(assumption 0). We assume linear models for continu-
ous, and probit models for ordinal, mediators; and a pro-
bit model for the outcome. With an ordinal mediator,
we assume that the actual mediator is an unobserved
continuous variable underlying the ordinal variable (this
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Table 1
Observed and unobserved potential mediator values and potential outcomes

Exposure Mi(0) Mi(1) Yi(0, Mi(0)) Yi(1, Mi(1)) Yi(1, Mi(0)) Yi(0, Mi(1))
Xi = 1 7 3 7 3 77 77

Xi = 0 3 7 3 7 77 77

3: observed; 7: not observed; 77: not observed and truly counterfactual

method thus does not apply to situations where this
is conceptually unlikely or implausible). The param-
eters of this causal model, if known, would allow us
to compute potential outcome probabilities (see details
shortly).

To use observed data to infer the parameters of this
causal model, however, we need the following five iden-
tifying assumptions. Four of these (assumptions 1–4)
have been thoroughly discussed in the causal mediation
literature for the case of a single mediator (see Vander-
Weele & Vansteelandt, 2009, for example). Assumption
5 is needed for this particular method of dealing with
multiple mediators.

1. no unmeasured exposure-mediator confounding
2. no unmeasured exposure-outcome confounding
3. no unmeasured mediator-outcome confounding
4. no mediator-outcome confounder that is influenced

by the exposure
5. no mediator-mediator interaction in influencing

the outcome
With these assumptions, our assumed model can be

represented as follows. Here we add the notation of Z,
a vector of all confounders of any of the X → M, X → Y,
M → Y relationships (see Figure 1), all elements of Z
are observed (assumptions 1–3), and none is causally
influenced by X (assumption 4). For a person i, the
potential values of the mediators if the exposure were to
take the value x are determined by

Mi(x) = µM + αx + Λzi + εM i,

where vector α represents the effects of the exposure,
and matrix Λ represents the effects of the confounders
on the mediators; vector zi contains the person’s own
confounders; and µM is a vector of intercepts. The error
vector εM i reflects influences on the mediators for this
person that are independent of confounders and expo-
sure condition. Note that a person’s potential mediator
values are partly determined by his/her confounders.
To simplify notation, we can drop the subscript i and
rewrite this as a population model:

M(x)|z = µM + αx + Λz + εM, (1)

where z is any pattern of the confounders that exists in
the population. The error terms εM are distributed mul-
tivariate normal with mean 0 and covariance Σ. The off-
diagonal elements of Σ may be non-zero, meaning that

X M Y Z 
α β 

γ 

Λ δ 

Figure 1 . Diagram representing the causal model

the mediators may be correlated due to reasons other
than the influence of the exposure and confounders.

With ordinal mediator variables, we use probit mod-
els, assuming that the ordinal variables M represent un-
derlying latent continuous variables M∗ that relate to
X and Z via the linear model defined by equation 1,
and the manifest M relates to the latent M∗ via sets of
thresholds τM that split each continuous latent mediator
into ordinal categories. In this case, the intercepts µM
are set to 0, the variance of each error term in εM is fixed
at 1, and Σ is a correlation matrix.

For the outcome Y, we also use a probit model, which
is equivalent to a normal linear model for a latent contin-
uous variable Y∗ underlying the binary Y, with a thresh-
old τY , i.e., Y = 1 if Y∗ > τY and 0 otherwise. The poten-
tial outcomes if the exposure were to take the value x
and the (continuous) mediators were to take the values
m are determined by

Y∗(x,m)|z = γx + βT m + δT z + εY , (2)

where γ, β and δ denote the effects of the exposure,
mediators and confounders on the outcome. The error
term εY reflects influences on the outcome that are inde-
pendent of the exposure, confounders and mediators. εY

is distributed normal mean 0 and variance 1, and is inde-
pendent of εM. With ordinal mediators, m in equation 2
represents values of the latent continuous M∗ underlying
M.

Under assumptions 1–4, the model parameters
µM,α,Λ, γ,β, δ,Σ, τY can be identified via regression
analysis with observed data, using a model that replaces
the potential mediators and potential outcomes with
their observed counterparts.

M|x, z = µM + αx + Λz + εM,
Y∗|x,m, z = γx + βT m + δT z + εY .
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With µM,α,Λ, γ,β, δ,Σ, τY identified, TE, NDE and NIE
are also identified, because the potential outcome proba-
bilities pxx′ are functions of these parameters. Replacing
m in equation 2 with the quantity for M(x′)|z based on
equation 1 gives,

Y∗(x, M(x′))|z = γx + βT (M(x′)|z) + δT z + εY

= γx + βT (µM + αx′ + Λz + εM) + δT z + εY

= βTµM + (βTΛ + δT )z + γx + βTαx′+

+ (βT εM + εY ), (3)

In this equation, the error combination (βT εM + εY )
is distributed normal, but its variance, βTΣβ + 1, is
greater than 1. Conversion from potential values of Y∗

to potential Y probabilities thus involves rescaling the
continuous metric so that error variance is equal to 1
before taking the inverse-probit,

P[(Y(x, M(x′))|z) = 1] =

Φ

 (−τY + βTµM) + (βTΛ + δT )z + γx + βTαx′√
βTΣβ + 1

 . (4)

(Φ is the inverse-probit, or standard normal cumulative
distribution, function.)

This method of combining normal error terms from
probit/linear models and rescaling the latent vari-
able underlying the binary outcome is an extension of
B. O. Muthén (2011), which uses a similar rescaling
strategy for a binary outcome and a single mediator; the
same rescaling also appears in Imai, Keele, and Tingley
(2010). In the single mediator case the rescaling incor-
porates the mediator’s residual variance (after account-
ing for the influence of the exposure and confounders).
With multiple mediators, this is replaced by Σ, the resid-
ual covariance matrix of multiple continuous mediators,
or the residual correlation matrix of multiple ordinal
mediators. This matrix includes the mediators’ resid-
ual variances (diagonal elements) and residual covari-
ances/correlations (off-diagonal elements). This feature
handles the mediators’ residual dependence (dependence
not explained by the exposure and confounders) in com-
puting causal mediation effects.

If the effect of a mediator on the outcome may differ
by exposure condition (or by confounder level), this can
be incorporated by adding interaction terms xm (or zm)
to equation 2. This would change the terms in equa-
tion 3, but the error combinations remain normally dis-
tributed which allows using the inverse-probit function
to convert to probability. The proposed method requires
that there is no mediator-mediator interaction (assump-
tion 5), however, because such an interaction would re-
sult in error combinations being non-normal, due to a
product of the mediators’ error terms.

A simple way to think about equation 4 is to rewrite
it as

P[(Y(x, M(x′))|z) = 1] = Φ

(
θ0 + θT

z z + θxx + θx′ x′

θscale

)
. (5)

where θ0 is a constant term, θz is a set of coefficients
for the confounders, θx is a coefficient for exposure con-
dition x, θx′ is a coefficient for exposure condition x′,
and θscale is a scale parameter; and these “new” param-
eters are defined as θ0 = −τY + βTµM (or = −τY with
ordinal mediators), θT

z = βTΛ + δT , θx = γ, θx′ = βTα,

and θscale =
√
βTΣβ + 1. In non-matrix notation, with n

confounders Z[1], ...,Z[n],

P[(Y(x,M(x′))|z) = 1] =

Φ

(
θ0 + θz[1] z[1] + ... + θz[n] z[n] + θxx + θx′ x′

θscale

)
. (6)

Note that this equation gives potential outcome prob-
abilities conditional on z, not the marginal pxx′ =

P[Y(x, M(x′)) = 1]. In certain cases researchers might
choose to use conditional potential outcome probabili-
ties (as implemented in B. O. Muthén, 2011), if the in-
terest is in causal mediation effects for one or more (sets
of) values for Z, for example the effects among men (or
women) with average height. More generally, averaging
over the sample distribution of Z provides estimates of
the marginal potential outcome probabilities,

pxx′ =

∫
P[(Y(x, M(x′))|z) = 1] f (z)dz. (7)

In the special case with no confounding, the potential
outcome probabilities are simply,

pxx′ = Φ

(
θ0 + θxx + θx′ x′

θscale

)
. (8)

Estimation procedures

Estimation is based on a three-step procedure: (1)
fitting a structural equation model, using probit link
for the outcome and identity/probit link for continu-
ous/ordinal mediators, (2) predicting potential outcome
probabilities pxx′ based on parameter estimates, and (3)
computing TE, NDE and NIE by taking differences or
ratios of these probabilities.

Model fitting is implemented in Mplus 7.2
(L. K. Muthén & Muthén, 1998-2012). We use
three estimators that allow fitting the model in Mplus:
ML (with probit link) for continuous mediators; and
WLSMV and Bayes for both continuous and ordinal
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mediators.1 For brevity we sometimes refer to them as
‘ML’, ‘WLSMV’ and ‘Bayes’ without saying ‘estimator’,
except where that would be confusing.

Without confounding, pxx′ , TE, NDE, NIE are func-
tions of model parameters only; they are built into
the Mplus input, so the three steps are combined in
one. With confounding, these quantities are functions
of model parameters and data (confounder values); the
model is run in Mplus and pxx′ , TE, NDE, NIE are com-
puted outside of Mplus.

When using ML and WLSMV, in the no confound-
ing case, Mplus provides Delta method-based confidence
intervals for these quantities; in the confounding case,
confidence intervals are obtained via bootstrapping from
the data (with 500 bootstrap samples). With Bayes es-
timator, we use non-informative priors and extract me-
dian point estimates and quantile credible intervals from
the posterior distribution (all Mplus default choices).

Simulation studies

We investigate several situations. Starting with the
simplified case of no confounding, we examine method
performance across variations in the signs and magni-
tudes of path coefficients and mediator residual correla-
tions. We then investigate variations in confounding, in-
cluding confounding of mediator-outcome relationships
only (with exposure randomized) and confounding of all
paths. We also examine situations with small potential
outcome probabilities. For this initial investigation, we
consider only cases with no model misspecification, i.e.,
the data generation model that matches the analysis
model.

A three-mediator setup is used throughout, with me-
diators being either all continuous or all ordinal. With
continuous mediators, we set residual variances to 1 and
intercepts to 0. This is without loss of generality, be-
cause any continuous variable can be converted to this
form through a simple rescaling and location shift, both
of which do not affect the strength of the relationships
among the variables or the causal mediation effects.
This choice aligns the (i) the manifest mediators in the
continuous mediators setup with (ii) the latent medi-
ators in the ordinal mediators setup (when using the
same set of path coefficients and mediator residual cor-
relations), which allows comparing method performance
between these two types of mediator variables.

For each scenario investigated, we use 1000 simu-
lations of sample size 500. We track the estimator’s
bias, standard deviation (SD), root mean squared error
(RMSE), estimated standard error (SE), and propor-
tion of the 95% confidence/credible intervals (CIs) that
cover the true effect (coverage). For RD-based effects,
which share the same raw scale (proportion), we use raw

bias, SD, RMSE and SE. For RR-based effects, which
are ratios on very different scales, we standardize these
quantities by dividing them by the true effects.

Variation in path and correlation signs (with
no confounding). We set the absolute values of all
path coefficients to 1 and of all mediator residual corre-
lations to 0.4, and vary their signs. Twenty-two scenar-
ios are examined (see Table 2), each combining one of
10 combinations of path signs and one of four mediator
residual correlation matrices (one with all three positive
correlations, and three each with one negative correla-
tion). These sign scenarios represent all permutations
of path and correlation signs, in the sense that each per-
mutation that is different from these can be converted
to one of them by (i) flipping the sign(s) – or reversing
the category order(s) – of certain mediator(s) or of the
outcome, and/or (ii) switching mediator locations (see
more detail in Web Appendix A).

Variation in path and correlation strengths
(with no confounding). We compare uniform path
strengths (all with absolute value 1) with two other

1Maximum likelihood estimation finds parameter esti-
mates that maximize the likelihood function, which is the
joint probability density of model parameters and observed
data. In this investigation, we use the simplest maximum
likelihood estimator in Mplus, ML, which assumes normality
of continuous variables.

Another estimation approach is least squares estimation,
which finds parameter estimates that minimize a fit func-
tion based on the squared differences between observed and
model predicted values. For ordinary least squares estima-
tion, which assumes homoscedastic and uncorrelated data,
the fit function is the sum of squares. For weighted least
squares estimation, which does not require the same assump-
tions, the fit function is a weighted sum of squares, using a
weight matrix that contains information about variances and
covariances of the data. Weighted least squares is commonly
used in SEM – see Savalei (2014) for an accessible introduc-
tion to this topic. Of the weighted least squares estimators
available in Mplus, we use WLSMV, Mplus’s default estima-
tor for models with ordinal dependent variables. WLSMV is
a three-stage estimator that uses the diagonal weight matrix
to obtain estimates and corrects the standard errors and test
statistics using the full weight matrix – see B. O. Muthén,
du Toit, and Spisic (1997) for technical details.

The Bayes estimator implements Bayesian analysis, a de-
scription of which is beyond the scope of this paper. The key
concept is that model parameters are assigned prior distri-
butions representing prior beliefs about them; data are used
to update these beliefs, which are represented in posterior
distributions; and posterior distributions are used to make
inference about the parameters. Readers not familiar with
Bayesian methods could consult textbooks and courses about
this area of statistics. For technical details about the Bayes
estimator in Mplus, see Asparouhov and Muthén (2010).

http://trang-q-nguyen.weebly.com/methods-papers.html
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Table 2
Scenarios for variation in path and correlation signs

Scenario α1 α2 α3 β1 β2 β3 γ ρ12 ρ13 ρ23

1p
1 1 1 1 1 1 1

0.4 0.4 0.4
1a −0.4 0.4 0.4

2p
1 1 1 −1 1 1 1

0.4 0.4 0.4
2a −0.4 0.4 0.4
2c 0.4 0.4 −0.4
3p

1 1 1 −1 −1 1 1
0.4 0.4 0.4

3a −0.4 0.4 0.4
3b 0.4 −0.4 0.4

4p
1 1 1 −1 −1 −1 1

0.4 0.4 0.4
4a −0.4 0.4 0.4

5p
−1 1 1 1 1 1 1

0.4 0.4 0.4
5c 0.4 0.4 −0.4
6p

−1 1 1 −1 1 1 1
0.4 0.4 0.4

6c 0.4 0.4 −0.4
7p

−1 1 1 1 −1 1 1
0.4 0.4 0.4

7c 0.4 0.4 −0.4
8p

−1 1 1 −1 −1 1 1
0.4 0.4 0.4

8c 0.4 0.4 −0.4
9p

−1 1 1 1 −1 −1 1
0.4 0.4 0.4

9c 0.4 0.4 −0.4
10p

−1 1 1 −1 −1 −1 1
0.4 0.4 0.4

10c 0.4 0.4 −0.4
Each scenario combines one of ten path signs combinations and one of four
mediator residual correlation matrices, denoted by the numeric and alphabetic
parts of scenario name. In the alphabetic part, ‘p’ = all mediator residual
correlations are positive; ‘a’, ‘b’ and ‘c’ = the residual correlation between
mediators 1&2, 1&3, and 2&3, respectively, is negative.
ρ12 = corr(M[1],M[2]), ρ13 = corr(M[1],M[3]), ρ23 = corr(M[2],M[3]).

variations: one where path strengths vary in a sym-
metric manner, abs(α) = abs(β) = (0.3, 1, 1.7); and one
where they vary in an asymmetric manner, abs(α) =

(0.3, 1, 1.7), abs(β) = (1.7, 1, 0.3) (‘abs’ means absolute
value) – using sign scenarios 4a, 5p and 6p as base sce-
narios for other parameters. We also compare uniform
mediator residual correlation strengths (all with abso-
lute value 0.4) with three other cases: low correlations
(absolute value 0.1); high correlations (absolute value
0.7); and mixed correlations (absolute values including
0.1, 0.4 and 0.7) – using sign scenarios 2a, 7p and 10c
as base scenarios for other parameters.

Variation in mediator-outcome confounding
(exposure randomized). We examine four cases of
confounding by a single variable Z: positive (λ =

(1, 1, 1)T , δ = 1), negative (λ = (1, 1, 1)T , δ = −1), mixed
but mostly positive (λ = (−1, 1, 1)T , δ = 1), and mixed
but mostly negative (λ = (−1, 1, 1)T , δ = −1), confound-
ing. We combine these with path coefficients and me-
diator residual correlations from the 22 sign scenarios,
generating 88 scenarios. The distribution of Z is not of
modeling interest; for data generation, we pick one that
is simple to average over to calculate the true potential
outcome probabilities: a discretized normal distribution

with mean 0 and variance 1, with ten equal-mass points
(−1.754, −1.105, −0.719, −0.411, −0.134, 0.134, 0.411,
0.719, 1.105, and 1.754).

All paths confounded. We modify the above 88
scenarios, letting the confounder influence exposure as-
signment: P(X = 1|Z) = Φ(0.5Z).

Small potential outcome probabilities. Based
on some results from previous investigations suggesting
that a small potential outcome probability might lead
to bias in estimated RR-based effects, we investigate
this matter specifically. We use four sign scenarios (5p,
6p, 10p, and 9p) as the basis to create four series of
scenarios: in each series, scenarios share all parameters
with the base scenario, but their outcome thresholds
vary to let the smallest potential outcome probability
range from 0.03 to 0.1 (see Table 3). The base scenarios
are selected so that the series differ in which probability
is the smallest (p00 in series 5p and 6p, and p01 in series
10p and 9p) and in the degree to which the four poten-
tial outcome probabilities compare to one another (be-
ing more similar in series 5p and 10p and more distant
in series 6p and 9p).

In all these investigations, the ordinal mediators’
thresholds are set to split them each into four cate-
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Table 3
Series of small-potential-outcome-probability scenarios: ranges of potential outcome probabilities and of actual out-
come prevalence

p00 p11 p10 p01 overall outcome prevalence

Series 5p
0.03–0.10

0.14–0.31 0.07–0.19 0.07–0.19 0.08–0.21
Series 6p 0.64–0.83 0.09–0.23 0.42–0.65 0.33–0.47

Series 10p 0.07–0.19 0.07–0.19 0.14–0.31
0.03–0.10

0.07–0.19
Series 9p 0.42–0.65 0.09–0.23 0.64–0.83 0.26–0.44

gories with (approximately) equal probability mass. In
all investigations except that of small potential outcome
probabilities, the outcome threshold splits the outcome
into two categories with equal probability mass.

For additional information, the simulations cover
wide ranges in the absolute values of standardized path
coefficients: 0.30 to 1.30 for α coefficients (standardized
with respect to the mediator); 0.08 to 1.28 for β coef-
ficients (standardized with respect to the mediator and
outcome); and 0.18 to 0.79 for γ coefficients (standard-
ized with respect to the outcome).

Results of simulation studies

While the investigations of variation in path/correla-
tion signs and of variation in confounding are conceptu-
alized sequentially (as described above), since they share
the same 22 sets of values for parameters α,β, γ,Σ, it is
more concise and informative to present their results to-
gether. This section therefore first reports results from
(1) sign scenarios without confounding and scenarios
with confounding, followed by (2) variation in path and
correlation strengths, and lastly (3) small potential out-
come probabilities.

Sign scenarios without confounding and sce-
narios with confounding. Overall, the method per-
forms quite well for 20 out of the 22 sets of values
for α,β, γ,Σ (see Table 2), except the two sets defined
for scenarios 6c and 9c (which will be discussed sepa-
rately). Figure 2 presents results from scenarios using
these 20 sets of parameters – including those with no
confounding, with mediator-outcome confounding and
with confounding of all paths, in the first, second and
third columns. Top and bottom panels represent RD-
and RR-based effects. Bias, RMSE and 95% CI coverage
are presented by estimator and mediator type. The plots
are violin plots, which combine density plots (the outer
shell) and boxplots (the inner core). Each plot includes
information from all scenarios in each category (20 sign
scenarios for each plot in column 1, and 80 confounding
scenarios for each plot in the other columns), with five
effects per scenario (1 TE, 2 NDEs and 2 NIEs).

In these scenarios, the three estimators perform sim-
ilarly. There are some differences: When estimat-
ing RD-based effects using continuous mediators, ML

and WLSMV have slightly smaller bias than Bayes (al-
though Bayes bias is also very small). When estimating
RD-based effects using ordinal mediators, WLSMV is
less biased than Bayes and this difference is more pro-
nounced in the presence of confounding, but Bayes SEs
are smaller, resulting in smaller RMSE. For RR-based
effects, there is a slight positive bias tendency – con-
sistent with the fact that when one quantity is divided
by another that has non-zero variance, this variance in-
duces positive bias in the magnitude of the ratio. Most
of the biases are small, however. Unlike with RD-based
effects, with RR-based effects, Bayes estimator performs
the best with regards to both bias and variance, and this
is more pronounced with ordinal mediators. Coverage is
similar across sets of scenarios, estimators and mediator
types, and is close to 95%. Median coverage levels are
slightly under 95%.

Examination of confounding variation among these
scenarios (excluding those with no confounding) shows
no difference in method performance across confounding
types.

Scenarios 6c and 9c are very special cases. Their
parameters do not immediately suggest what might be
problematic. However, if we flip the sign (or reverse the
category order) of the first mediator, they are mathe-
matically equivalent to the two setups below.

6c equivalent 9c equivalent
α β α β

M[1] 1 1 1 −1
M[2] 1 1 1 −1
M[3] 1 1 1 −1

γ = 1 γ = 1
ρ’s= −.4 ρ’s= −.4

Here the mediators have the same relationships (as
one another) with the exposure and the outcome, but
their residuals are all negatively correlated. This re-
sults in substantial imprecision in estimating the out-
come model’s parameters, which entails imprecision in
potential outcome probabilities computed as well as
bias for probabilities far from 0.5 (due to the nonlin-
ear transformation). Bias in estimated RDs (see Fig-
ure 3, first column, top panel) are thus substantially
larger than in the non-problematic scenarios (see corre-
sponding section of Figure 2). With RRs (Figure 3,



CAUSAL MEDIATION ANALYSIS WITH MULTIPLE MEDIATORS 9

●●
●●●●

●●●●
●●●● ●●●●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●●

●●

●

●

●

●●●

●

●●

●
●●

●

●●

●
●
●

●●

●

●

●●

●
●

●●

●

●

●●

●

●

●●

●

●

●●

●
●●●●

●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●
●

●●

●

●●●●

●●●

●

●●

●
●●●

●●

●
●

●●

●●

●●

●
●

●●

●

●

●●

●●

●
●

●●

●
●

●●

●

●

●●

●

●

●●

●

●●●●●●

●

●●

●●●●

●●

●
●

●●

●
●●

●

●●

●

●●

●

●●

●

●

●●

●
●

●●

●

●

●●

●

●●

●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

RDs: no confounding RDs: M−Y confounded, X randomized RDs: all paths confounded

−0.03

−0.02

−0.01

0.00

0.01

0.02

bi
as

●●●●
●

●●●●
●●●●

●●

●●●●

●●●● ●●●●●
●●●

●●●●
●●●●
●●●●
●●●●

●●

●●●●

●
●●
●

●●●●

●
●●
●

●●●●●
●●●●●●● ●

●●
●●
●●
●
●●●●

●●●●●●●●●●●●

●●●●
●●●●●●●●

●●●●

●● ●●●●●
●●●●●●●

●●
●●●●

●●●●

●●●●

●●●●
●●●●

●●●●

●
●●
●

●●●●
●●●●

●●●●

●●●●

●●●●
●●

●●●●

●●●●●
●●●

●
●●
●

●●●●

●●●●

●
●●
●

●●●●
●●●●●●●●

●●●●●●●●●●●●
●●●●

●●●●
●●●●
●●●●

●● ●●●●●●●●

●●●●●●
●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●
●
●●
●

●
●●
●

●●

●●●●

●
●●●

●●
●●●●●●●●

●●●●

●
●●
●●●●●

●●●●

●●●●●●●●

●
●●
●

●●●●

0.02

0.04

0.06

0.08

0.10

0.12

R
M

S
E

●
●●

●

●●

●●●● ●

● ●
●●

●●●●

●●
●●
●●

●

●●

●●●●

●●

●

●●●

●

●●●
●

●

●

●

●●

●●

●

●

●●
● ●●●

●●●

●●●●
●

●
●
●
●●0.92

0.93

0.94

0.95

0.96

0.97

CM CW CB OW OB CM CW CB OW OB CM CW CB OW OB

estimator and mediator type:  CM=ML−continuous; CW=WLSMV−continuous; CB=Bayes−continuous; OW=WLSMV−ordinal; OB=Bayes−ordinal

95
%

 C
I c

ov
er

ag
e

●●
●●●●

●

●●

●
●●●
●

●

●

●
●
●

●

●
●●

●

●●

●

●●
●

●●●●●●
●●
●●

●
●●
●

●●

●●
●●
●

●

● ●●
●●●●
●●●●
●●
●
●

●●

●●●

●

●●

●

●

●●●●●

●

●
●●

●

●●
●
●
●●

●

●●●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●●
●

●

●
●

●

●

●●
●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●
●●

●●●●●●●●●
●●●●
●
●●

●
●
●●

●●
●●
●
●●
●●
●
●
●●

●

●

●

●●●

●

●●

●

●
●●●●●●●
●

●

●

●

●●

●

●

●●●
●●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●●
●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

RRs: no confounding RRs: M−Y confounded, X randomized RRs: all paths confounded

−0.05

0.00

0.05

0.10

0.15

st
an

da
rd

iz
ed

 b
ia

s

●

●●

●●

●●●
●
●●●●●●
● ●

●
●●
●
●
●
●●●
●

●
●
●●●●●●●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●●

●

●●●●

●

●

●

●

●

●

●

●
●●●
●

●
●
●●

●
●●
●●

●
●
●●●●●● ●

●
●●●●●

●
●
●●●●●

●
●

●

●

●
●
●

●
●

●

●

●

●●
●●

●

●
●
●
●
●

●

●

●

●
●
●
●
●
●

●
●
●●●

●
●
●●
●●●

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

st
an

da
rd

iz
ed

 R
M

S
E

●
● ●

●
●

●●●●●●
●
●

●●●

●

●●●

●

●● ●●

●
●
●
●

●●●

●●●●

●●

●

●●

●
●

●●

●

●
●

●

●

●

●

●●●

●
●
●

●

●●

0.91
0.92
0.93
0.94
0.95
0.96
0.97

CM CW CB OW OB CM CW CB OW OB CM CW CB OW OB

estimator and mediator type:  CM=ML−continuous; CW=WLSMV−continuous; CB=Bayes−continuous; OW=WLSMV−ordinal; OB=Bayes−ordinal

95
%

 C
I c

ov
er

ag
e

Figure 2 . Results from non-problematic sign scenarios without confounding (first column), with mediator-outcome con-
founding (second column) and with all paths confounded (third column) – excluding problematic scenarios 6c, 9c and those
based on them. Top and bottom panels represent risk difference (RD) and risk ratio (RR) based effects. Bias, root mean
square error (RMSE) and 95% CI coverage are presented by estimator and mediator type. The plots are violin plots, which
combine density plots (the outer shell) and boxplots (the inner core). Each plot includes information from all scenarios in
each category (20 for each plot in column 1 and 80 for each plot in the other columns) with five effects per scenario (1 total,
2 natural direct and 2 natural indirect), i.e., each plot in column 1 represents 100 effects, and each plot in the other columns
represents 400 effects.
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first column, bottom panel), when using ordinal me-
diators, one effect in each of these scenarios is espe-
cially biased: NIE(1·)RR = p11/p10 in scenario 6c, and
NDE(·1)RR = p11/p01 in 9c. In both cases, the denomi-
nator is a probability that is estimated very imprecisely
and with bias (SD equivalent to 65% and 77% of the true
value in scenarios 6c and 9c, respectively, and bias equiv-
alent to 12% of the true value in both – using WLSMV).

Examining scenarios 6c and 9c alongside scenarios
with confounding based on them (Figure 3, second and
third columns), we first note that when using contin-
uous mediators, the ranges of bias (and RMSE, not
shown) in both RD- and RR-based effects are compa-
rable across estimators, similar to what is seen in non-
problematic scenarios. When using ordinal mediators,
several patterns emerge: First, for RD-based effects,
WLSMV has larger bias when there is no confounding,
but Bayes has larger bias when there is confounding.
Second, with ordinal mediators, the combination of 6c
and 9c each with one of the four mediator-outcome con-
founding setups results in greater bias in the most biased
RR-based effect, but combinations with the other three
confounding setups substantially reduce the bias. (This
is why the second and third columns in Figure 3 have
the same number of points representing large biases in
RR-based effects as the first column, and not four times
as many points.) The key here is variation in the po-
tential outcome probability that is the denominator of
the effect. In confounding scenarios with reduced bias,
this probability is larger, and closer to 0.5, than in the
base scenario (6c/9c), and is thus estimated with less
bias. In confounding scenarios with increased bias, this
probability is the same as in the base scenario, but con-
founding results in larger variance, which induces larger
bias in the ratio. Third, with ordinal mediators, Bayes
has better RMSE (not shown) than WLSMV for both
RD- and RR-based effects, similar to what is seen in
non-problematic scenarios. With respect to coverage, in
confounding scenarios, coverage seems largely compara-
ble across estimators and mediator types, albeit slightly
lower with ML estimator. In no-confounding scenarios,
coverage is noticeably worse when using ML or WLSMV.
This may be due to the different methods by which CIs
are obtained. When using Bayes estimator across the
board and when using ML or WLSMV for the confound-
ing case, we rely on some sampling method to obtain
CIs – resampling from the data with ML and WLSMV,
and sampling the posterior distribution with Bayes es-
timator. ML and WLSMV CIs for the non-confounding
case, however, are Delta method-based and may be more
prone to low coverage in these problematic scenarios.

Path and correlation strengths. The method
performs well across the variations in magnitudes of

path coefficients and mediator residual correlations,
with bias, MSE and coverage comparable to those in
the base scenarios (see more in Web Appendix B).

RR-based effects with small potential outcome
probabilities. Figure 4 presents bias in RR-based
effects in the four series of small-potential-outcome-
probability scenarios. Where bias is present, the smaller
the probability, the larger the bias. Bias is not uniform,
however, over the different series or over the different ef-
fects. Comparing the series, overall bias is related to the
rareness of the actual outcome: Series 9p has the least
bias, because even though it has small p01, this is a truly
counterfactual probability which does not represent ac-
tual outcome prevalence; actual outcome prevalence in
the two exposure conditions is better indicated by p11
and p00 which in this series are not quite small. The
other three series, which have more bias, either have low
outcome prevalence in one exposure condition (series 5p
and 6p, outcome prevalence ranging from 0.03 to 0.10 in
exposure condition 0), or relatively low outcome preva-
lence in both exposure conditions (series 10p, outcome
prevalence in both conditions ranging from 0.07 to 0.19).

Within a series or a scenario, which specific RR-based
effects are biased depends on which potential outcome
probabilities are estimated with bias, and which proba-
bilities that serve as denominators of effects have large
variance. Here it is relative bias and relative variance
(i.e., raw bias and raw variance divided by the proba-
bility) that matter. Several factors affect these two el-
ements: (i) truly counterfactual probabilities (p10, p01)
tend to be estimated more imprecisely than partially ob-
served probabilities (p00, p11); (ii) probabilities farther
away from 0.5 tend to have larger raw bias and smaller
raw variance; (iii) the larger the uncertainty in model
parameter estimates, the larger the variance and bias
of predicted potential outcome probabilities; and (iv)
relative variance and relative bias tend to be larger for
smaller probabilities. In the series of scenarios consid-
ered, the largest biases are seen in effects whose denom-
inators are the smallest potential outcome probability
(T ERR and NDE(·0)RR in series 5p and 6p, and NDE(·1)RR

in series 10p and 9p). This seems to be a general trend,
but not a rule, because the factors listed above may work
together in complicated ways and may result in another
effect being the most biased; an example is NIE(1·)RR in
scenario 6c, whose denominator is p10 = 0.22, which is
not small and not the smallest potential outcome prob-
ability (p00 = 0.06), but is estimated with by far the
largest relative variance and relative bias.

Comparing estimators, in most of the effect-by-series
plots in Figure 4, and in all those with the most bias,
Bayes estimator is the least biased, bringing bias close
to zero even for the lowest end of the outcome proba-

http://trang-q-nguyen.weebly.com/methods-papers.html
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Figure 3 . Results from problematic sign scenarios 6c and 9c (first column), and scenarios based on them that also have
mediator-outcome confounding (second column) and all paths confounded (third column). Top and bottom panels represent
risk difference (RD) and risk ratio (RR) based effects. Bias and 95% CI coverage are presented by estimator and mediator
type, using dot plots. Each plot includes information from all scenarios in each category (2 in column 1, and 8 in the other
columns) with five effects per scenario (1 total, 2 natural direct and 2 natural indirect), i.e., each plot in column 1 represents
10 effects, and each plot in the other columns represents 40 effects.

bility range. This is consistent with prior results favor-
ing Bayes for RR-based effects with ordinal mediators.
In these small-potential- outcome-probability situations,
Bayes is also favored when using continuous mediators.

Summary of simulation results. With the com-
monly used ML and WLSMV estimators in Mplus, the
method performs well in most cases, for RD-based ef-
fects generally and for RR-based effects when using
continuous mediators. When using ordinal mediators
and estimating RR-based effects, Bayes performs bet-
ter than WLSMV. In the special case where the medi-
ators have the same relationships, as one another, with
the exposure and the outcome, but their residuals are
negatively correlated (and in mathematically equivalent
situations), there is great uncertainty in parameter es-

timates and the effects have larger bias. In this case,
with continuous mediators, the three estimators perform
similarly for both RD- and RR-based effects, with the
exception that Bayes estimator has smaller RMSE for
RR-based effects; with ordinal mediators, WLSMV is
better for RD-based effects and Bayes for RR-based ef-
fects. When one or more potential outcome probabilities
are small and RR-based effects are of interest, Bayes
is generally the best estimator, regardless of mediator
type. Additional simulations show that in the extreme
case with a semi-positive-definite mediator residual cor-
relation matrix, Bayes is also the best: ML fails com-
pletely, WLSMV either fails to fit the model or greatly
overestimates variance, while Bayes successfully fits the
model, overestimates variance but to a much lesser ex-
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Figure 4 . Bias of RR-based effects in four small-potential-outcome-probability series of scenarios, by estimator and mediator
type. Biases are standardized by dividing by the true effects.

tent, and has substantially smaller RMSE (see more in
Web Appendix C).

Application to the PAS trial

We apply the method to data from the PAS
trial, comparing the parent-and-student combined in-
tervention to the control condition of regular curricu-
lum. The mediators examined are adolescent self-
control, adolescent-reported parental rules about alco-
hol, parent-reported rules, adolescent attitudes about al-
cohol and parent attitudes about adolescent drinking, at
10-month follow-up. The outcome is weekly drinking at
22-month follow-up. All mediator/outcome models con-
trol for baseline age, gender, education track (vocational
or academic), parent education (the higher attainment
of parents, if two parents), and religion (no religion,
Christianity, Islam or other religions). To strengthen
the plausibility of the no unmeasured confounding as-

sumptions, each mediator model controls for the me-
diator’s baseline measure; and the outcome (as well as
the mediator models) control for baseline drinking fre-
quency. In addition, each of the adolescent-reported
mediators is allowed to be predicted by baseline mea-
sures of the others; each parent-reported mediator is
allowed to be predicted by the other’s baseline measure;
and adolescent-reported rules is allowed to be predicted
by baseline parent-reported rules and parent attitudes.
For detailed description of the measures, see Koning
et al. (2010). For mediators that are highly skewed
(adolescent- and parent-reported rules, and adolescent
and parent attitudes), controlling for baseline measures
also helps bring their residuals closer to normally dis-
tributed, which is important because the method relies
on combining normal error terms.

For this illustrative example, to keep things simple,
we restrict the sample to adolescents with fully observed
baseline data (n=1178, including 536 students in 36

http://trang-q-nguyen.weebly.com/methods-papers.html
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classes in five intervention schools, and 642 students in
49 classes in four control schools); all inferences made
here are with respect to this specific sample. With miss-
ing data on the outcome (17.0%) and mediators (3.5%
for student-, and 18.4% for parent-reported mediators,
on average), we use full-information maximum likeli-
hood estimation, assuming missing at random given ob-
served data. Maximum likelihood estimation is also ap-
propriate with the continuous mediators. The analysis
incorporates clustering of students in classes (see Mplus
input in Web Appendix E). We obtain 95% CIs of poten-
tial outcome probabilities and causal mediation effects
via bootstrapping, with 500 bootstrap samples.

In the model with five mediators, the intervention
positively predicts all mediators, and four mediators (ex-
cept parent-reported rules) negatively predict the out-
come. Parent-reported rules is strongly correlated with
both adolescent-reported rules and parent attitudes, and
thus is non-significant after these other two variables
are accounted for. This variable is removed, and the
model with four mediators (see Figure 5) is the final
model. This model is consistent with previous findings
– three of the four mediators we retain (adolescent self-
control, adolescent-reported rules, and parent attitudes)
were found to mediate the intervention’s effect on weekly
drinking onset (Koning et al., 2010). As all mediator
residual covariances are positive and the predicted po-
tential outcome probabilities (see next paragraph) are
not small, this is not a problematic or special case.

The potential prevalence of weekly drinking at 22
months is estimated to be p00=31.4% (CI=27.8,35.5%)
had the whole sample been in the control condi-
tion; p11=18.1% (CI=14.3,21.7%) had the whole sam-
ple been in the intervention condition; and p10=22.0%
(CI=17.3,26.3%) had the whole sample participated in
the intervention but the mediators been kept at control
levels. For illustrative purposes, here we include effects
on both RD and RR scales; usually only one is needed.

T ERD = − 13.3% (95%CI = − 18.9,−7.9%)
NDE(·0)RD = − 9.4% (95%CI = − 15.0,−3.0%)
NIE(1·)RD = − 3.9% (95%CI = − 5.5,−2.5%)
T ERR = 0.58 (95%CI = 0.45, 0.72)
NDE(·0)RR = 0.70 (95%CI = 0.55, 0.87)
NIE(1·)RR = 0.82 (95%CI = 0.76, 0.88)

If the model is correctly specified and the identify-
ing assumptions hold (this should be judged carefully!),
we could interpret these effects as causal: If the whole
sample had been in the intervention (as opposed to con-
trol condition), this would have lowered weekly drinking
prevalence at 22 months by 13.3 (CI=7.9,18.9) percent-
age points or by a ratio of 0.58 (CI=0.45,0.72) (the to-

tal effect). If the whole sample had participated in the
intervention but the mediators (adolescent self-control,
adolescent-reported parental rules, adolescent attitudes
and parent attitudes) had been kept at control levels
and not allowed to change, this hypothetical condition
would also have lowered weekly drinking prevalence, rel-
ative to the control condition, by 9.4 (CI=3.0,15.0) per-
centage points or by a ratio of 0.70 (CI=0.55,0.87) (the
direct/unmediated effect). Relative to this hypotheti-
cal condition, a normal intervention condition (where
the whole sample had participated in, and their media-
tors been free to change as a result of, the intervention)
would have weekly drinking prevalence that is lower by
3.9 (CI=2.5,5.5) percentage points or by a ratio of 0.82
(CI=0.76,0.88) (the indirect/mediated effect).

Researchers familiar with traditional mediation meth-
ods may have noted that an analogous traditional anal-
ysis would involve fitting the same structural equation
model and computing the total indirect effect – the sum
of four mediator-specific indirect effects, each a prod-
uct of exposure-to-mediator and mediator-to-outcome
coefficients. The estimates of this indirect effect – un-
standardized, and standardized with respect to the out-
come – are −0.17 (standard error [SE] = 0.04) and −0.13
(SE=0.03), respectively. The corresponding direct effect
estimates are −0.35 (SE=0.11) and −0.26 (SE=0.09) –
see additional model outputs in Figure 5. This result
is interpreted in association terms: holding confounders
constant, on average students in the intervention arm
have lower ‘outcome’ than those in the control arm, and
this difference consists of a part mediated by the me-
diators and an unmediated part, of magnitudes −0.13
(SE=0.03) and −0.26 (SE=0.09) standard deviations,
respectively. The ‘outcome’ here is not the binary out-
come variable of interest (weekly drinking), but the la-
tent continuous variable underlying this binary variable.

By defining effects based on the potential outcome
framework, causal inference methods make it possible to
go beyond association to make inference about causality,
contingent on assumptions. With the proposed method,
the conversion of parameter estimates to potential out-
come probabilities makes it possible to discuss effects in
terms of the outcome variable of interest rather than a
latent underlying variable.

Discussion

This paper presents an approach for estimating medi-
ation effects when there are multiple continuous or ordi-
nal mediators and the outcome is binary, which involves
(i) fitting probit/normal models for the mediators and
the outcome, (ii) using parameter estimates and con-
founder data to predict potential outcome probabilities,
and (iii) using such probabilities to compute TE, NIE

http://trang-q-nguyen.weebly.com/methods-papers.html
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Intervention 

Adolescent self-control 
intercept: 0.81 

Adolescent-reported parental rules 

intercept: 1.16 

Adolescent attitudes 
intercept: 1.60 

Parent attitudes 
intercept: 2.52 

Weekly drinking  
at followup 

threshold: –3.73 

0.15 

0.17 

0.15 

0.054 

0.08 

0.10 
0.01 

0.16 

0.01 

0.01 
–0.35 

–0.28 

–0.37 

–0.30 

–0.44 

0.36 

0.29 

0.32 

0.094 

Model outputs used to compute causal mediation effects: 

unstandardized path coefficients, mediator residual variances and covariances, continuous mediators’ intercepts and outcome threshold 

Intervention 

Adolescent self-control 
R2 = 0.26 

Adolescent-reported parental rules 
R2 = 0.33 

Adolescent attitudes 
R2 = 0.25 

Parent attitudes 
R2 = 0.31 

Weekly drinking 
at followup 

R2 = 0.43 

0.21 

0.26 

0.23 

0.15 

–0.26 

–0.15 

–0.18 

–0.15 

–0.12 

Model outputs usually used in a non-causal analysis: 

path coefficients (here standardized with respect to the mediators and outcome for ease of interpretation) and variance explained (R2) 

Figure 5 . The final model for the illustrative example, which controls for age, gender, education track, parent education,
religion, baseline measures of mediators and baseline drinking frequency (see text for detail). The top diagram presents
model outputs used in computing causal mediation effects. These are contrasted with the bottom diagram including outputs
usually used in non-causal analysis. Standard errors and p-values are not included to avoid cluttering. Statistically significant
quantities (with p-value<0.05) are bolded.

and NDE. The proposed method performs well with all
the estimators considered in most simulated scenarios,
with special cases where one estimator performs better.
Applying to a real data example, we partitioned the TE
of an adolescent alcohol prevention intervention into a
NIE and a NDE, both expressed in terms of reduction
in drinking prevalence; such findings may be useful to
prevention scientists as well as program managers and
policy makers. This method is relevant to analyses of
social/behavioral interventions designed to impact mul-
tiple mediating pathways, as well as naturally occur-

ring exposures that act on an outcome through multiple
mechanisms.

We offer several suggestions for the use of this
method, assuming that in most cases causal mediation
analysis incorporates confounders. The choice of an es-
timator (and in some cases the effects to estimate) is
simple, based on the following rules-of-thumb:

� In general, with continuous mediators, all three
estimators can be used. ML and WLSMV are
slightly favored for RDs. Bayes is slightly favored
for RRs.
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� In general, with ordinal/mixed mediators, use
WLSMV for RDs and Bayes for RRs.

� A special case: If one or more potential outcome
probabilities are expected or found to be small,
and RRs are of interest, use Bayes, regardless of
mediator type.

� A problematic but uncommon case: If the medi-
ator residual covariance matrix is semi-positive-
definite, use Bayes and estimate RDs (not RRs).

� A problematic but probably rare case: With or-
dinal/mixed mediators, (i) if the mediators have
similar relationships (to one another) with the ex-
posure and the outcome, but their residuals are all
negatively correlated (you can check this after fit-
ting the model), and (ii) in mathematically equiv-
alent situations (i.e., you get (i) after changing
the sign(s) of certain mediators(s) and/or of the
outcome), there are options to minimize bias: (1)
estimate RDs instead of RRs and use WLSMV to
do so; or if RRs are desired (2) estimate RRs using
Bayes (less biased than WLSMV), or (3) choose a
TE decomposition less affected by bias. The third
option may be hard, but if the case is similar to
scenario 6c, use T ERR = NIE(0·)RR×NDE(·1)RR; if it
is similar to 9c, use T ERR = NDE(·0)RR×NIE(1·)RR.

In any causal inference analysis, we urge the re-
searcher to thoroughly consider the method’s assump-
tions given the data to be analyzed, to avoid making
faulty causal claims. With the proposed method we
have discussed identification assumptions, with a focus
on different types of confounding. The model itself is
a combination of assumptions about how the variables
influence one another and about the distributions of the
errors; for this method an important assumption is nor-
mally distributed errors. Since many of the measures
used in social research are non-normal, it is important
when using this method to check whether residuals are
close to normally distributed.

Our next step in the development of this method will
be to evaluate its performance under violation of some
model assumptions (including non-normal residuals, and
true outcome models different from probit), and in a
broader range of situations (e.g., an exposure-mediator
interaction, which is not covered by simulations in this
paper, or ordinal mediators with heavier mass at one
end). This method should also be compared in future
work to other methods for similar purposes, including
VanderWeele and Vansteelandt’s (2013). The strat-
egy of using a multivariate distribution to allow medi-
ator residual dependence could potentially be extended
to accommodate other mediator types. Another area
for future work is sensitivity analysis for unmeasured
confounding, especially confounding of the mediator-

outcome relationships, in this multiple-mediator setting.

While these simulations consider causally-unordered
mediators (i.e., one mediator does not cause another),
the proposed method can be used with causally-ordered
mediators when the purpose is to estimate their com-
bined mediation effect. In this case, the assumption
of no exposure-induced mediator-outcome confounding
applies to the collection of mediators as a whole, i.e.,
there is no variable that is influenced by the exposure
and that influences the outcome and one or more medi-
ators in the collection, but it is fine for mediators within
the collection to influence one another. If this and the
other assumptions hold, the method correctly estimates
potential outcome probabilities.

If the interest is in path-specific effects in the con-
text of causally-ordered mediators, readers are referred
to other work, e.g., Daniel et al. (2015); Imai and Ya-
mamoto (2013); VanderWeele and Vansteelandt (2013);
Vanderweele, Vansteelandt, and Robins (2014).

While this study considers one outcome, models with
multiple outcomes are common in SEM research. When
such models are used for causal analysis, it is important
to consider the component for each outcome: which me-
diators are relevant, which confounders are needed, and
how likely the identification assumptions are to hold. A
model combining multiple outcomes may include more
confounder and/or mediator variables than needed for
each of the outcomes, and it is unclear how such com-
bined analysis compares to separate analyses; this needs
to be investigated in future work.

This study investigates the estimation of RD- and
RR-, but not OR-based effects. We postulate that the
proposed method would estimate ORs less well than it
estimates RDs and RRs. Four probabilities need to be
estimated for one OR; any bias in any of the four prob-
abilities and variance in the two denominator probabil-
ities contribute to biasing the OR. (The RR, in con-
trast, involves only two probabilities, with only one be-
ing in the denominator.) In cases with potential out-
come probabilities close to 0.5, however, the method
may still work. Also, the Bayes estimator, which works
well with RRs, might have acceptable performance with
ORs. These are questions requiring future investigation.

The simulation studies consider independent units,
but the alcohol prevention study involves clustered data.
To keep things simple for an illustrative example, we es-
timate marginal means, variances and covariances, cor-
recting standard errors for clustering. However, the
model does not allow parameters to vary across clus-
ters. Future work should examine how to generalize this
method to a multilevel setting so that potential outcome
probabilities could be expressed as a function of individ-
ual factors and cluster membership.
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To facilitate application, Web Appendix D includes
generic Mplus inputs covering a mix of two continuous
mediators, two ordinal mediators and two confounders,
which can easily be adapted to other situations. These
are accompanied by R code that performs bootstrapping
when using WLSMV/ML, or processes the posterior dis-
tribution when using Bayes. The Mplus input for the
final model of the illustrative example is also included
(Web Appendix E).
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